
Transformer: A Database-Driven Approach to
Generating Forms for Constrained Interaction

Protiva Rahman, Arnab Nandi
The Ohio State University

Columbus, Ohio
{rahmanp,arnab}@cse.ohio-state.edu

ABSTRACT

Form-based data insertion or querying is often one of the most
time-consuming steps in data-driven workflows. The small screen
and lack of physical keyboard in devices such as smartphones and
smartwatches introduce imprecision during user input. This can
lead to data quality issues such as incomplete responses and errors,
increasing user input time. We present Transformer, a system that
leverages the contents of the database to automatically optimize
forms for constrained input settings. Our cost function models the
user input effort based on the schema and data distribution. This is
used by Transformer to find the user interface (UI) widget and
layout with ideal input cost for each form field. We demonstrate
through user studies that Transformer provides a significantly
improved user experience, with up to 50% and 57% reduction in form
completion time for smartphones and smartwatches respectively.

CCS CONCEPTS

•Human-centered computing→User interface programming;
Empirical studies in HCI.
ACM Reference Format:

Protiva Rahman, Arnab Nandi. 2019. Transformer: A Database-Driven
Approach to Generating Forms for Constrained Interaction. In 24th In-
ternational Conference on Intelligent User Interfaces (IUI ’19), March 17–
20, 2019, Marina del Rey, CA, USA. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3301275.3302269

1 INTRODUCTION

Many of our daily activities such as ordering food and booking
appointments require us to fill out forms. While these used to
be filled on paper, nowadays most forms are digitized and hence
connected to a database. This shift from paper to digital has been
accompanied by the rise of constrained display devices such as
smartphones and tablets. Further, with the advent of wearables
such as smartwatches and smart glasses, oftentimes the only mode
of interaction for the user is through touch as opposed to on a
physical keyboard [74], which makes form input inefficient.

This variety in types and sizes of devices makes manually design-
ing websites for each one [22] expensive. Responsive web design

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
IUI ’19, March 17–20, 2019, Marina del Rey, CA, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6272-6/19/03. . . $15.00
https://doi.org/10.1145/3301275.3302269

makes this easier with tools such as Bootstrap [2] which adapt
layout to screen size, but the designer still needs to manually spec-
ify the widget type and dimensions for every screen size. This
brings added burden on the designer who now has to consider
a combinatorially large number of options to find the optimal
one. This can be time consuming and mentally challenging for
the designer, and often requires extended domain specific usabil-
ity studies [29]. In fact, it has been found that designers prefer
aesthetics to efficiency [13, 67] and find it difficult to quantify the
benefits of one design over another [13, 58]. While data-driven
approaches [24, 50, 63, 72] are being explored for augmenting the
designers’ abilities, they require large datasets of interface designs,
which is not always available. But every form is linked to a database
which can be leveraged.
Motivating Example: Consider filling a modified version of the
online application for a U.S. passport [9], on an iPhone 5s (Figure
2). There are four input text fields, which can have lengths of up
to 25 characters. The gender input field uses a radio button which
requires one click on a desktop, but here might require multiple taps
due to its small size. The rest of the fields use dropdown options,
which are presented in a slot machine style list. This means for
country of birth, a user might have to scroll through 239 options in
the worst case. Additionally, the user is required to scroll horizon-
tally and vertically through the form. Date of birth and SSN require
the user to navigate to the numeric keyboard. Filling an extended
version of this form takes over 2 minutes (Section 4).

An optimized interface should reduce completion time and scope
of error. Preference should thus be given to widgets that require
fewer interactions. Further, widget sizes should be large enough
for the user to make a selection accurately without scrolling and
zooming. The optimized extended version of the above form (as
described in Table 4) takes on average 1.5 minutes to complete
which is around a 25% reduction from the original time. The time
reduction stems from replacing the dropdowns with radio buttons,
rangeslider, and segmented controllers (Figure 1), which reduces
scrolling. Moreover, dropdowns require atleast two taps, while the
others require one (Figure 2). Adjusting the widget and size can
thus significantly improve user experience.

The widget choice depends on the device (it is easier to type on
desktop than smartphone) and database that is linked to the form.
Each form field corresponds to a database column. The schema, data
types, and distribution dictate the form design. For one-to-many
schema relations, we have to ensure that the parent field appears
before its children. Next, the data type of the column determines
the default keyboard and if certain widgets such as rangesliders are
feasible. The column data informs the number of user interactions.
For example, for text widgets, the average length of the data values

https://doi.org/10.1145/3301275.3302269
https://doi.org/10.1145/3301275.3302269

IUI ’19, March 17–20, 2019, Marina del Rey, CA, USA Protiva Rahman, Arnab Nandi

determines typing time. We use these observations to develop a cost
model to decide on the most appropriate widget for a form field.
Optimizing forms is thus entirely database-driven and depends on
the data model, allowing our methods to be used with any database
implementation.
Challenges in Automating FormDesign: Developers base their
design decisions on years of experience and automating this knowl-
edge is not straightforward. This is illustrated during widget selec-
tion for a form attribute. Generally, it is easier to select from choices
than to type on a small screen. However, if the number of choices is
large, the additional effort in scrolling makes it more convenient to
type. But there is no definite measure of at what point the number
of options is "too many".

Another challenge is in ordering and grouping fields. Due to the
small size of screens, web pages either require the user to zoom or
scroll along both dimensions. Scrolling can create issues for users,
such as re-finding their place in the form. The use of pagination
provides an unambiguous way to step through the entire form,
one screenful at a time. While Popp et al. [59] motivate the use
of scrolling over tabbed navigation, these comparisons are done
for forms where tabbed navigation is discontinuous (through the
use of a "Submit" button), which is not true in our case. Moreover,
Petychev [56] and Sanchez [66] suggest that scrolling reduces com-
prehension and takes longer [23, 57] in survey tasks. Keeping these
in mind, we design our system to split the form into multiple pages
and reduce scrolling (if scrolling is preferred, our approach can
still be used by laying out the pages one below the other). How-
ever, splitting the form into the minimum set of pages requires
considering all orderings of fields, since the ordering dictates space
efficiency, which is exponential in number of fields.

This is problematic because there is a time constraint on optimiz-
ing the form. A user could request a webpage to be optimized when
they access it on their device and there are strict latency constraints
whenever there is a human-in-the-loop [40]. The form then needs
to be optimized on the fly, since it is not possible to store all versions
of all forms. Moreover, even if forms are cached, the schema and
data distribution might change with time, requiring a form which
was optimized for a device earlier to be redesigned upon access at a
later time. A brute force approach is not practical since grouping n
fields in different pages is equivalent to partitioning the set of size n.
The number of ways to do this is given by Bell numbers [42] which
have a growth rate of O(nn) [54]. For a form with 16 fields, there
are B16 = 10, 480, 142, 147 subsets for which we have to calculate
the cost, which can take hours, making it infeasible to consider all
possible layouts.

Prior work in this area includes domain-model based optimiza-
tions [62, 67, 69, 71]. However, all of these use rules for widget
selection based on the data type of the attribute, but do not lever-
age the attribute values. Another line of work, the SUPPLE sys-
tems [30, 31, 33], has focused on personalizing interfaces, also
via cost-based layout optimization. But they require studies on
preference-elicitation [31] or an ability modeling task [34], as well
as a matching function where the designer specifies the appropri-
ateness of a widget for a particular field. While work in modeling
user input is necessary for personalizing interfaces, the suitability
of a widget can be automatically inferred, reducing the burden on
the designer.

Contributions:We introduce Transformer, which automatically
optimizes form layout for a given screen size. The main contribu-
tions of this paper include: (1) A cost function of human effort in
data entry that leverages the contents of the database to estimate
the expected number of taps, slides, and scrolls; (2) Implementa-
tion details of Transformer that optimizes a web form for any
screen size in O(n2) in number of fields, using the cost function.
Transformer allows for automatic widget selection and provides
a guide for grouping fields using database properties; (3) Empirical
validation of Transformer through user studies on a smartphone
and simulated smartwatch for eight forms. Our results show that
there is up to 57% reduction in form completion time and up to a
93% improvement in user rating.

The paper is organized as follows: In the next section, we describe
our cost model and formulate the form optimization problem. This
is followed by the details of our system implementation in Section
3, experimental evaluation in Section 4, and discussion of related
work in Section 5. Finally, we conclude in Section 6.

2 COST MODEL OF HUMAN EFFORT

In order to estimate the user effort during data entry, we define a
cost function that leverages the database to measure widget suit-
ability for each field. Our interactions are based on prior work in
estimating task completion time [25, 38, 45], however we employ
the database to quantify them. We clarify relevant terms in the
context of our work in Table 1.

Table 1: Preliminaries: Terms used in this paper

Form: An ordered list of form field, rendered as HTML.
Form Field: Each element on the form that requires input.
Widget: UI element for entering data, dependent on input type of the
field, e.g., radio button, checkbox, etc.
Data: The prior values entered for the corresponding database column.
Data Type: The data type for each column as defined in the schema.
Database: Underlying relational database linked to the form. Each form
field corresponds to a database column. Submitting a form is thus equiv-
alent to issuing an insert or select query. The where clause of the
queries constrain columns to the values entered by users in the analo-
gous form fields.
Data Distribution: The frequency of each data value, which can be
used to order options and default values in widgets.
Cardinality: Number of distinct values in a database column.
Foreign-key: Reference to a value in another table.
One-to-Many Join: Each row in Table 1 is linked to one row in Table
2. Multiple rows in Table 1 can be linked to same row in Table 2.
Many-to-Many Join: Each row in Table 1 can be linked to more than
one row in Table 2. Multiple rows in Table 1 can be linked to same row
in Table 2.
One-to-One Join: Each row in Table 1 is linked to exactly one row in
Table 2. Two rows in Table 1 cannot link to the same row in Table 2.

2.1 Types of Interactions

Each user interaction can be broadly classified into four distinct cat-
egories that contribute differently to the completion time: tap, scroll,
slide, and typing on soft keyboard. The first three actions roughly
correspond to tapping, dragging, and flicking interactions in Lee et

Transformer: A Database-Driven Approach to
Generating Forms for Constrained Interaction IUI ’19, March 17–20, 2019, Marina del Rey, CA, USA

INSERT INTO
applications(lastnamestring:23131:text:35chars,

height_feetint:0-10:dropdown,
date_of_birthdate:03/01/1920-01/30/2016:text:8chars,
……)

VALUES (…);

INSERT INTO
applications(lastnametext:page1:30px,

height_feetrangeslider:page1:30px,
date_of_birthtext:page2:30px,
……)

VALUES (…);

Database

Cost Function

Redesigned Form
Original Form

Data Types,
Cardinality, Range

Data Distribution

TRANSFORMER

Distinct Cardinality of 7

Range of
values used to
decide widget
and widget size

Binary Field

Data
distribution
dictates default
value

Figure 1: An overview of the steps of Transformer as it optimizes a modified version of the U.S. Passport Application Form

(Form G in Table 4). The original form is used to extract the required fields (which can also be input by the user in the absence

of a form) and translated to a type-annotated intermediate representation (shown here as an INSERT query) which includes

the distinct cardinality and length of string for categorical / string attributes, and ranges for numerical attributes. This in-

termediate representation is then used to compute an optimized form based on the cost of interaction in the constrained

setting, whereupon it is enriched with the ideal widget, page number and display height. This information along with the

data distribution of each field is used to generate the five redesigned HTML pages, one of which is shown here.

al.’s GOMs keystroke level model for mobile touchscreen [45]. Even
though typing can be modeled as a series of taps, the keyboard
size is fixed in most devices and it takes more time to interact with
these as opposed to radio buttons, checkboxes, etc. Note that our
goal is not to merely model the task completion time but to model
the human effort in a manner that allows for effective optimization
of form layout.

2.2 Cost Function

Similar to the keystroke-level GOMS model [41], for a particular
field, the input cost is the weighted sum of the tapping cost, the
sliding cost, the typing cost and the scrolling cost. The cost for field
i is thus:

costi = tapi ·wtap + slidei ·wsl ide+

typei ·wtype + scrolli ·wscroll
(1)

where:
• tapi is the number of taps.
• slidei is the range of the slider, since as the range gets larger
it becomes more difficult to exactly select a value on the
slider.
• typei is the length of string to be typed, estimated as average
length of prior input values in database.

• scrolli is the total number of options divided by the number
of options visible for field i .
• wtap ,wsl ide ,wtype ,wscroll represent the respective weights.
We describe tuning of weights in the evaluation section.

This model is similar in structure to prior work, we augment it with
the ability to estimate tapi , slidei , typei , scrolli from the database
to inform form design.

2.3 Problem Formulation

Given a form with n fields, and groupings of these forms into pages,
each with an associated cost as defined above, we want to find
the set of pages that covers each form field exactly once while
minimizing the overall cost. This is an instance of the set cover
problem.

Theorem 1. Finding the minimum cost form layout is atleast as
hard as finding a minimum weight mutually exclusive set cover (Proof
in Appendix).

Thus, a solution to SCP, which is a well known NP-Hard problem
[27], is necessary for finding the minimum cost form layout. How-
ever, solutions to SCP are not enough for finding minimum cost
form layout. LetU be the set of form fields required for layout. Let S ,
the set of subsets of fields, be the candidate pages {S :∀s ∈ S, s ⊂ U }.

IUI ’19, March 17–20, 2019, Marina del Rey, CA, USA Protiva Rahman, Arnab Nandi

25 chars

8 chars

77 options

10
5 opts

7 options

239
opts

11

9
chars 5 taps

2
taps

10
taps

(A)

(B)

1 slide

1 tap

5 taps

35 chars

Figure 2: (a) The U.S. Passport Application form showing

the maximum number of characters and options to scroll

through for each field as described in motivating example.

The average number of taps to make an entry is also shown.

(b) Use of different widgets for the field reduces the amount

of user interaction, thus reducing the time to fill the form.

The weight of each page is the sum of the costs of the fields in
that page (Equation (1)). To generate S , we need to consider all
possible subsets of form fields, along with widget assignment for
each field. If we only consider the field groupings without widget
assignment, then for n fields, S is the power set P(U) of all fields,
i.e., |P(U)| = 2n subsets. However, the widget assignment affects
the interaction cost and the space taken by a field, which in turn
affects the scroll cost of the remaining fields in the set. Then for k
widgets, for each subset p ∈ P(U), there are k |p | ways of assigning
widgets to a subset:

|S | =
∑

p∈P (U)

k |p | ≤
∑

p∈P (U)

kn = 2nkn ∈ O(2nkn)

There are O(2nkn) subsets, for which costs have to be calculated
and solutions to SCP such as integer linear programming are in-
feasible. Other common optimization solutions such as dynamic
programming also require all subsets to be considered, and generat-
ing the input subsets from the form fields in itself takes exponential
time. Given such constraints, we look into building each page in a
bottom up approach, adding each field in a greedy fashion, with our
cost function automatically pruning infeasible page options. While
Transformer can fall into local optima, it effectively reduces user
effort while maintaining interactive latency, as we will demonstrate
in Section 4.

3 THE TRANSFORMER SYSTEM

Transformer uses nine basic widgets depicted in Figure 3, that
cover various datatypes and interactions. We first describe how the
relational database aids in widget selection and then present our
layout algorithm.

3.1 Database Constraints

The relational model allows us to automatically constrain the use
of certain widgets, which we describe below (See Table 1 for expla-
nations of terms).

3.1.1 Schema-Level Constraints. Tables with foreign-key depen-
dencies denote a semantic relationship which can be exploited at the
UI level. Each type of dependency provides separate functionality:

(1) One-to-Many Join: For relations with one-to-many joins, an
accordion widget can be used, where the header is the value
of the foreign-key attribute and the values of the second table
appear upon expanding the header. If the second table has
multiple attributes, subsequent form pages can be filtered so
that they only show valid values for that attribute.

(2) Many-to-Many Join: An accordion widget can be used for a
many-to-many join as well, however, a decision has to be
made on which attribute is the header and which are the
children. Transformer uses the cost function to automati-
cally select the one requiring less overall human effort, i.e.,
the one with lower cardinality to be the header.

(3) One-to-One Join: One-to-one joined relations can automati-
cally infer the value of the second attribute from the value
of the first, hence only one of them needs to be displayed.

3.1.2 Data-Level Constraints. The datatype of the attribute allows
Transformer to make further restrictions on widgets and key-
boards.

(1) Numeric: Rangesliders can only be used for numeric fields
or for attributes that have a one-to-one dependency with a
numeric field, denoting an order. Further, if a text field is used
for a numeric attribute, the device automatically switches to
the numeric keyboard.

(2) Date: The datepicker widget is only compatible with at-
tributes with date datatype.

(3) Binary: The toggle and checkboxwidgets are only compatible
with binary attributes. The checkbox widget can be used if
multiple binary attributes can be grouped together, either
because they belong to the same table or because there are
foreign-key dependencies denoting semantic relations.

3.1.3 Cardinality Constraints. The cardinality of the field plays a
major role in deciding the appropriateness of a particular widget. It
dictates how many keystrokes are required if a text widget is used
and what distance must be scrolled to if radio buttons or dropdowns
are used. A segmented controller is only used if the cardinality of
the field is small enough to fit in one line of the screen.

The above constraints are encoded in the cost function. Incompat-
ible widgets are assigned high costs to denote infinity, so that they
are not selected. This automatically prunes the search space, similar
to a branch and bound algorithm. Note that unlike rule-based selec-
tions, these are restrictions on widget choices, not a direct mapping

Transformer: A Database-Driven Approach to
Generating Forms for Constrained Interaction IUI ’19, March 17–20, 2019, Marina del Rey, CA, USA

Segmented Controller

Rangeslider

Text

Toggle

Accordion

Radio Buttons and
Checkbox

Datepicker

Dropdown

Figure 3: Widgets used by our system in the optimized forms. The segmented controller, datepicker and interactive label of

the toggle allow the user to make a selection in one tap. The size of the buttons and handle of the slider make them easier to

interact with and reduces scope of error.

Table 2: Description of cost calculations and restrictions for

each widget. wtap ,wsl ide ,wtype ,wscroll represent weights of

each interaction type. The database allows us to gather all

necessary information for costs and widget suitability.

Widget Cost Restrictions

Radio
buttons

wtap + count
disp_ht ×

wscroll
None

Checkbox
wtap×count+

count
disp_ht ×

wscroll

Grouped
Binary Fields

Rangeslider wsl ide × count Numeric data

Datepicker
(countmonths +

countyears) ×wtap
Date datatype

Segmented
controller

wtap None

Dropdown
count × wscroll + 2 ×
wtap

None

Accordion

(countheadinдs +

countoptions) ×
wscroll
disp_ht + 2 ×wtap

Foreign-key De-
pendency

Toggle wtap Binary dataype

Text
avд lenдth o f data ×
wtype

None

between data type and widget. For example, datepicker will only
be considered for the date datatype, however a date attribute could
use a dropdown widget if it has lower cost.

3.2 Form Layout Generation

We assume that the database attributes to be displayed are known.
This can be automatically selected [39], specified by the user [70]
or extracted from an existing web form for the database. Prior
to selecting widgets for the attributes, we query the database to
extract relevant information such as cardinality, datatype, etc. and
produce an annotated list of relevant form fields. The form is then
transformed and rendered as described below.

3.2.1 Transform. The transform procedure is shown in Algorithm
1. It takes as input, a list of form fields annotated with data type
and range to calculate cost, and assigns a widget to each field
along with a page number and the order it appears on for that
page. The cost calculation for each widget and relevant constraints
are summarized in Table 2. The cost calculation requires the field,
widget and remaining page height. The field dictates number of
attributes, widget dictates the type of interactions and page height
determines the scroll cost.
The traditional greedy solution to the max cover problem, which
adds the set that covers the most number of uncovered items with
minimum weight is inapplicable, since calculating costs for all
subsets is expensive, as mentioned in the previous section. Instead,
our greedy algorithm builds the sets of fields (i.e., page groupings
of fields along with the widget assignment) in a best-fit bottom up
approach, at each step adding the field-widget combination with
the minimum cost across all the available pages. It also compares
the cost of adding it to existing pages against the cost of adding
a new page. The cost of adding a new page adds the cost of an
additional tap to the overall cost. The field is then added to the page
which adds the minimum cost to the existing form cost. The field
is annotated with widget choice and page number.

3.2.2 Render. During this step, we take the annotated list contain-
ing field, widget, page number and ordering to generate the HTML
for each page. We represent radio button and checkbox widgets
as buttons, with each option on a separate row with width equal
to the width of the screen. For radio button, clicking on a but-
ton highlights it to indicate selection and unselects anything that
was previously selected. The checkbox is similar as well, except
it allows multiple selections. For text input, the entire width is
available for typing and the labels are displayed as placeholder text
on the input field. The handle of the rangeslider is increased to
make it easier for the user to manipulate it. The toggle inputs are
displayed on the same line as the label and clicking on the label
toggles the selection as well.

Note that Transformer is meant to provide widget and layout
dimensions for a specified screen size. It is up to the application

IUI ’19, March 17–20, 2019, Marina del Rey, CA, USA Protiva Rahman, Arnab Nandi

Algorithm 1 Transform Algorithm
paдe : max page number, increases to accommodate fields

ht : array containing remaining display height left for each page,
decreases as fields are added to page

Cost() : Returns cost of field for given widget and height
MinHeiдht() : Returns minimum height required for field-widget

combination
1: procedure Transform(f ield,widдets,disp_heiдht)
2: paдe ← 1
3: ht[1] ← disp_heiдht
4: for k = 1→ f ields .lenдth do ▷ loop through fields
5: f ← f ield[k]
6: cost ←∞
7: for i = 1→ paдe + 1 do ▷ loop through pages
8: for j = 1→ widдets .lenдth do

9: cost ← Cost(f ,widдet[j],ht[i])
10: if cost < mincost then
11: f .wid ← widдets[j]
12: f .paдe ← i
13: f .ht ← MinHeiдht(f , f .wid)
14: mincost ← cost
15: end if

16: end for

17: end for

18: ht[f .paдe] ← ht[f .paдe] − f .ht
19: end for

20: end procedure

developer to incorporate these in responsive layouts or static web
pages.

3.3 Runtime Analysis

For a formwithn fields or a databasewithn columns, our redesigned
form can have a maximum of n pages since a field cannot be split
across two pages. So the transform phase will take O(n2) to iterate
through each page for each field in the worst case, given a constant
number of widgets. This is a significant improvement over the
brute force algorithm that takes exponential time. The reduction is
achieved by placing fields on the first page that they fit, which uses
space inefficiently since a different ordering, with different widgets
might take fewer pages and hence fewer taps. However, our results
show that the greedy approach is adequate.

4 EXPERIMENTAL EVALUATION

In this section, we validate that our cost function accurately esti-
mates the form completion time, show that our algorithmmaintains
an interactive performance and evaluate our system on whether it
improves the usability of forms. To approximate the usability, we
hypothesize the following:

(1) Forms that are easier to fill, take less time to complete.
(2) Forms with easier interactions have fewer errors, since the

user is able to enter information more precisely.
(3) Finally, users should rate Transformer’s forms as easier to

use than the original ones.

In the following paragraphs, we describe the controlled user study
employed to evaluate our hypotheses.

Parameter Tuning: Our cost function is the weighted sum of all
interactions. To get insights on weights, we conducted a pilot study
with 15 users on eight forms (Table 3) on an iPhone 4s, which has a
screen size of 960px by 640px . We observed that on average, it took
one second to fill each radio button. This is corroborated by Lee
et al. [45], who find that it takes .33s to tap and 1.35s to make the
decision to tap. We also find that time for text and dropdowns grew
linearly with number of characters to type and number of options.
The latter is corroborated by Sad and Poirier [65], who fit a linear
regression to word index on a dropdown lists. Based on these, we
assigned a weight of 1 for tapping, 7 for typing and 3 for scrolling.
For a slider, a weight of .5 was assigned, because even though tap-
ping is easier then sliding, in many cases we prefer a slider since it
uses fewer pixels vertically. Again, these are weights for selecting
appropriate widgets, and not necessarily for estimating interaction
time. Our aim is to illustrate the use of the database in form layout
generation.

Devices: The user studies were done on an iPhone 5s running iOS
9.3.1, with 64GB storage, 1GB RAM and a 1136px by 640px screen
with a resolution of 326 pixels per inch. We conducted two sets
of experiments, the first one using the entire phone screen and
the second using only 300px by 300px to simulate a smartwatch
screen. We did not do experiments on a smartwatch due to lack of
resources and experienced smartwatch users, which makes it diffi-
cult to control for training bias [40]. While smartwatches currently
do not support text input and are mostly used for notifications, it
demonstrates the impact of our system as screens get smaller. We
focus our experiments on phones and watches, since these provide
the most constrained interaction and where optimization is most
critical, as opposed to desktops and tabletops.

Dataset: We evaluate our algorithm on a combination of eight
real world data collection and query forms, selected to capture
a variety of activities, widgets and lengths. Table 3 gives a brief
description of the forms. For each form we created a database
corresponding to the form attributes and filled it with synthetic data
having uniform distribution. Each form was redesigned manually
by the authors and with Transformer, giving three versions of
each form for a total of 24 forms for each screen size. We use manual
to refer to the manually optimized forms, and automated to refer to
those optimized by Transformer. To control for motor memory
and other factors mentioned in [52], the information filled in was
standard across all users, and presented in the order it appeared in
the forms.
Participants and Methods: We recruited 30 users, 15 for smart-
phone (7 male, median age 22) and another 15 for simulated smart-
watch (7 male, median age 22), consisting of graduate and under-
graduate students from the University Campus for a within-subject
user study. In order to be eligible for the study, they had to be smart-
phone users. Figures 4 and 5 compare form completion times by
expertise and phone owned by user respectively. The improvement
in time is mostly consistent across user types, i.e., a two-tailed t-test
did not reveal any significant difference in results. Each user filled

Transformer: A Database-Driven Approach to
Generating Forms for Constrained Interaction IUI ’19, March 17–20, 2019, Marina del Rey, CA, USA

Table 3: Forms Used in Experiments

Form Title & Field Description

A
Hilton Reservation: 1 text field, a datepicker, buttons
for adding rooms (up to 26) and 2 dropdowns with 4
options [5].

B

United Airlines: 1 radio button, 2 text fields, a check-
box, 3 dropdowns with 3,12 and 30 options. The number
of travelers is a dropdown with 8 categories, each has a
stepper that goes up to 8 [8].

C Library Advanced Search: 37 checkboxes, 5 drop-
downs, 4 with 4 options and one with 22, 1 text field [6].

D

Music Search: The genres have 20 options with each
having sub-options, the largest number being 302 in the
form of checkboxes, 2 dropdowns with 96 options each,
2 radio buttons and a text field [1].

E
Roommate Matcher: 5 text fields, 8 dropdowns with
2,2,5,4,3,3,4,4 options, 3 radio button fields and 7 check-
boxes and requires scrolling [3].

F
Maintenance Request: 4 text fields, 2 radio buttons
and 5 dropdowns with 8, 2, 323, 105 and 37 options, and
a pop up datepicker [4].

G U.S. Passport Application: 9 text fields, 1 radio button
field, 6 dropdowns with 239, 77,10,11,5 and 7 options [9].

H
RoomReservation: 4 text fields, 2 pop up datepickers,
4 radio button fields, 5 dropdowns with 35, 5, 96, 96 and
7 options [7].

500 550 600 650 700
300

400

500

3-4(7)

4+(2)
1-2(6)

Original Time

A
ut
om

at
ed

Ti
m
e

Figure 4: Completion times by daily hours spent on phone

for smartphone study participants. Reduction in time is

slightly more for expert users.

500 550 600 650 700 750
400
450
500
550
600

iPhone(9)
Galaxy(4)

LG(1)
Android(1)

Original Time

A
ut
om

at
ed

Ti
m
e

Figure 5: Comparison of form completion times by phone

owned by user for smartphone study participants. Time re-

duction is consistent.

in the same set of 24 forms, however the order in which they filled
the original version, automated redesign and manual redesign for
each form was randomized to account for learning bias and was

decided before we met with the user, to prevent selection bias [40].
For the experiments, we met with each user individually as follows:

(1) In a prestudy, users were asked about their phone usage.
(2) For each form, users were given the same printed informa-

tion and asked to enter it on the phone provided. The printed
information appeared in the same order as in the forms, to
avoid any time loss in finding information.

(3) Userswere asked to say out loud any time they used backspace
or had to make a reselection when filling in data, as these
counted as errors. The study conductor also watched to keep
track of errors.

(4) Users were timed with a stopwatch from the moment they
started typing till they hit submit for each form.

(5) After filling the form, the user was asked to rate the difficulty
of the form. This, along with the time it took for us to load
the next form, provided a two minute break to the user, to
counter fatigue effects, before they repeated the procedure
for the next form.

The smartphone experiments took 60 minutes, while the smart-
watch ones took 35. For simulated watch experiments users were
asked to ignore any text inputs, since smartwatches currently do
not support this. When optimizing forms, we disabled the text wid-
get on Transformer so that fields that required text input were not
shown on the form. Due to challenges in rendering and availability
of forms in an overly constrained size, we were unable to render
the original form B in the 300px × 300px variant. As a result, we
compared optimized B on watch screen size against the original
rendered on the phone as a best case scenario: it would take at least
as long1 to fill these forms on a watch screen as it would on the
phone, if not longer.

0 10 20 30 40 50 60 70
0

20

40

60

80

100

E

F H

A

G

C

B

D

E

FH

A

G

C

B

D

Cost Reduction

Ti
m
e
Re

du
ct
io
n

Transformer
R2 = .6
KLM

R2 = .3

Figure 6: Cost function Validation for Smartphone Study:

Change in time vs. change in cost between original and au-

tomated forms, using Transformer cost and the KLM cost.

Our cost is a close estimation of the completion time, with

Pearson correlation coefficient of .6.

1as empirically verified by our experiments

IUI ’19, March 17–20, 2019, Marina del Rey, CA, USA Protiva Rahman, Arnab Nandi

Table 4: SmartphoneResult Summary: Relative difference of

averaged times and ratings between original and automated

forms of 15 users along with p-values of two tailed paired

t-tests for smartphone study. Assuming normality, the time

decrease was statistically significant at alpha level of .05 for

most forms. Starred items had amediumCohen effect while

the rest had a large effect. Absolute values shown in Fig-

ures 8 and 12.

Form

Time

Decrease (%)

p-value

Rating

Increase (%)

p-value

A 40.5 0.00 5.5 0.28
B 35.93 0.00 42.9 0.00
C 44 0.00 70 0.00
D 50.79 0.00 46.1 0.00
E 12.76* 0.1 7.2* 0.41
F 15.85* 0.09 22.5 0.03
G 28.19 0.00 46 0.00
H 16.81 0.03 18.75* 0.06

4.1 Cost Function Validation

In order to validate our cost function, we compare if the reduction
in cost between the original and redesigned form is an accurate
representation of the reduction in form completion times, using data
from the smartphone user study. We also compared our cost with
Lee et al.’s keystroke level model (KLM) for gaming interactions on
a smartphone.

Figure 6 shows the comparison for each form, while Figure 8 has
the absolute times. Our cost reduction is mostly proportional to the
time reduction, with a Pearson correlation coefficient of .6. It does
better than KLM, which has a correlation coefficient of .3, probably
because those weights were tuned for gaming applications and not
widget selection.

Form A is an outlier in our model; this is the room booking form
for hilton hotel with fields for check in and check out date. Clicking
on either field brings up a pop up datepicker on which both dates
can be selected. Many users would accidentally change the check in
date while trying to select the check out date, which is not captured
by our cost model. Our model is generally accurate in estimating
difficulty.

4.2 Performance

Figure 7 shows running time of widget assignment and layout
generation for forms with varying number of form fields on the
smartphone and the smartwatch. For forms with the same num-
ber of fields, their average is shown. Running time increases with
number of form fields and decrease in screen size. This is because
smaller screens require the form to be split into multiple pages
and hence, more combinations are explored. Inspite of this, Trans-
former finishes in under 10 milliseconds for forms containing up
to 18 fields, with no human input. This is a significant improvement
over brute force which takes hours for even 10 fields.

4.3 Form Completion Times

Figures 8 and 9 show the average completion times of 15 users
for the original, automatically optimized and manually optimized

Table 5: Smartwatch Result Summary: Relative difference of

averaged times and ratings between original and automated

forms of 15 users along with p-values of two tailed paired t-

tests for smartwatch study. Starred items had a medium Co-

hen effect while the rest had a large effect. Time reduction is

greater for forms which took longer to fill (D,E,F). Absolute

values shown in Figures 9 and 13.

Form

Time

Decrease (%)

p-value

Rating

Increase (%)

p-value

A 19.85 0.03 34.12 0.03
B 16.75 0.05 9.76* 0.5
C 29.61 0.0 12.32* 0.5
D 57.64 0.0 93.33 0.0
E 44.92 0.0 33.4 0.0
F 44.53 0.0 71.66 0.0
G 17.95 0.03 33.95 0.06
H 26.36 0.0 20.81* 0.26

6-ACD 8-FG 14-H 16-B 18-E
0

2

4

6

Number of Attributes

Ru
nn

in
g
tim

e
(m

s)

Smartphone
Smartwatch

Figure 7: Running time of layout generation inmilliseconds

against number of attributes for smartphone and smart-

watch. The corresponding forms are listed next to attribute

sizes. For values with multiple forms, their averages are

shown. Even though there is an increase in time with num-

ber of attributes, the time is under 10 ms for upto 18 at-

tribute.

version for the 8 forms for the smartphone and smartwatch study
respectively. This reflects an average reduction of 30–32% and a
maximum reduction of 50–57% for smartphone and smartwatches,
as shown in Tables 4 and 5. Assuming normality, a two tailed t-test
showed that the results were mostly statistically significant.

The low decrease in Forms E and F can be explained by the fact
that they had many dropdown fields which were replaced with
scrollable interfaces, which was still easy enough to fill on the
phone. On the smartwatch however, the difficulties caused by the
small widget sizes are amplified and forms E and F have higher
improvements. The absolute completion time (for both optimized
and original forms) is lower for watches, due to the removal of
text fields. Another result of this is that, forms with a fewer text
fields, such as E, have higher improvements, as opposed to those

Transformer: A Database-Driven Approach to
Generating Forms for Constrained Interaction IUI ’19, March 17–20, 2019, Marina del Rey, CA, USA

A B C D E F G H
0

100

200

300

Ti
m
e
on

Ph
on

e
(s
)

Original
Automated
Manual

Figure 8: Average form completion time of 15 users for 8

forms on smartphone. Automatically optimized forms were

always quicker to complete.

A B C D E F G H
0

50

100

150

Ti
m
e
on

W
at
ch

(s
)

Original
Automated
Manual

Figure 9: Average form completion time of 15 users for 8

forms for smartwatch sizes. The automatically optimized

forms were always quicker to complete, even when com-

pared against original forms which used the whole phone

screens (B). Forms that took longer to fill (E) had larger time

reductions.

with more, such as Form H. The difference between manual and
automatic forms were not statistically significant.

4.4 Error Rates

Figures 10 and 11 shows the average error rates for each form
on the phone and watch respectively. On the phone, the decrease
in error rates is statistically significant for forms A and B. Most
errors stemmed from text fields, as seen from the high error rates for
forms G and H, which remained mostly unchanged in the optimized
forms. Except for form D, the automated form had fewer errors
than the original, showing that change in widgets can improve data
quality on phone screens. On the constrained screen of the watch
however, the larger widget sizes often led to accidental selection,
which the user had to correct. This was not the case for the original
forms where the user had to deliberately look for and select the
widget. It is interesting to note that even though form E had the

CA D E FB G H
0

2

4

6

8

Er
ro
rs

on
Ph

on
e

Original
Automated
Manual

Figure 10: Average errors of 15 users for 8 forms on phone.

While results are not statistically significant for all except

A and B, the automated version had fewer errors for all but

form D.

A B C D E F G H
0

1

2

3

4

Er
ro
rs

on
W
at
ch

Original
Automated
Manual

Figure 11: Average errors of 15 users for 8 forms on watch.

The number of errors was higher on the optimized forms

due to accidental selection.

highest number of errors, it still had a significant improvement in
completion time, i.e., it was faster for the user to correct errors on
the optimized form than to fill the original.

4.5 User Ratings

Figure 12 and 13 show the average rating of users on the usability
of the form, 1 – very difficult, 10 – very easy. In many cases, the
manual forms were rated as being easier to fill out mainly because
the fields were grouped semantically during page splits and fields
such as months were ordered meaningfully as opposed to the al-
phabetic ordering of the automated ones. For the most part, the
automated forms were rated significantly higher, implying that sim-
ply changing widgets to improve interaction provides a noticeably
better user experience, even without improving aesthetics.

4.6 Discussion

We find that redesigned forms by Transformer using data cus-
tomized widgets provided significant reduction in time and was

IUI ’19, March 17–20, 2019, Marina del Rey, CA, USA Protiva Rahman, Arnab Nandi

A B C D E F G H
0

2

4

6

8

10

Ra
tin

g
on

Ph
on

e

Original
Automated
Manual

Figure 12: Average ratings of 15 users for 8 forms on the

phone. A rating of 8 corresponded with the highest level of

ease, while 1 corresponded with the lowest. The automated

forms were rated higher for all.

A B C D E F G H
0

2

4

6

8

10

Ra
tin

g
on

W
at
ch

Original
Automated
Manual

Figure 13: Average ratings of 15 users for 8 forms on the

watch. Automated forms were usually rated higher than

original.

preferred by the users over the original ones. We gathered the
following insights from the user studies:

(1) The most time consuming element of the original forms is
the small widget size which requires users to zoom in. Thus,
it is important to specify a minimumwidget size that the user
can easily interact with as well as one that requires minimal
scrolling. Optimizations such as making labels interactive
for radio buttons and checkboxes, increasing the size of the
handle of the rangeslider reduced time.

(2) After users zoom in, they need to scroll in both directions
for two columnar forms and even if the fields are placed in a
single column the users needed to scroll horizontally to look
at the labels. Design considerations such as placing the label
for text widgets as the placeholder in the widget as well as
displaying labels on top eliminated this in the redesigned
form. Vertical scrolling by itself does not add to the time if
the users are scrolling in one direction, demonstrated by the
low times of manual Form A.

(3) The slot machine style dropdowns in iOS are time consum-
ing. Form D had the option of limiting results by specifying
the start and end year. Both of these fields were represented
as dropdowns ranging from 1920 to 2016. In the manual
redesigned form each year this was split into three fields
one for century having two options: 19 and 20 and the latter
two for the year each ranging from 0 to 10. Even though
users found this representation odd, they were able to fill in
the form much quicker, with significant reduction in time.
Further, in form B we transformed the dropdown for month
with a range slider and radio button in the manual and au-
tomated ones respectively, which also helped decrease the
completion time.

(4) Text fields require on average 20s and our high weight for it
captures this. Specially for fields like name, the autocorrect
feature of the phone comes into play and the user has to hit
backspace many times leading to high error rates.

(5) Our cost does not capture ambiguity in the language and
structure of the form, it merely evaluates the difficulty from
a user interaction perspective, as can be seen from the un-
derestimation of the original cost of form A.

5 RELATEDWORK

Transformer is related to research in five areas: modeling human
effort, data-driven interfaces, automated form generation and in-
teraction on constrained interfaces.

Modeling Human Effort: Various models have been proposed for
predicting human input such as Fitts’, GOMS and ACT-R [15, 17,
28, 41, 68]. These models require extensive studies for estimating
parameters and need to be conducted for each new input paradigm,
i.e., touch, gestures. There have been different variations of these
models for input modes [25, 38, 45], smartwatches [10], differently-
abled users [11, 60] as well as for specific widgets [65]. These are
orthogonal to our work, since they do not optimize form layouts,
but can be used to inform weights in our model.

Data-Driven Interfaces: Declarative models include the master-
mind project [69], AIDE [67],Vairamuthu et al.’s multi-criteria rec-
ommender system [72], MenuOptimizer [13], model-based [26, 59,
61] and rule-based UI generation [16, 62, 71]. While these systems
use the database to link to widgets, the linking is specified through
user defined rules, layout hints, parameters, etc. The database con-
tents are not leveraged.

In the database community, data-driven approaches have been
employed mainly to create query interfaces that provide cues on
the database schema and eliminate reliance on querying language.
These include keyword search querying[48, 49, 75], natural lan-
guage querying [37, 47, 51] and forms [39, 70]. While these works
use the data to help the user specify queries, our focus is on employ-
ing the data to improve the user interface for constrained displays.
More recently, tools [14, 24, 43, 50, 63] are being created to aug-
ment the designers’ abilities but they require a store of prior layout
designs.

Transformer: A Database-Driven Approach to
Generating Forms for Constrained Interaction IUI ’19, March 17–20, 2019, Marina del Rey, CA, USA

Automated FormGeneration: The SUPPLE systems[30–33] frame
adaptive layout generation as an optimization problem similar to
us. However, they require the designer to provide a matching func-
tion to denote the appropriateness of a widget for every device.
This is precisely the problem that Transformer solves through
the use of the database backend. Other work in automated form
creation include [19, 20, 73], which do not optimize input widgets.
Constraint solving algorithms such as Cassowary [12] have been
widely adapted to layout pages, but solving constraints for widgets
and layout together takes exponential time.

Interaction on Constrained Interfaces: While research has fo-
cused on adapting web pages for constrained display devices [22,
36, 44, 64], no prior work has addressed specifically adapting forms
for these devices. The techniques used are mainly applicable for
browsing webpages and fail to address the unique challenges of
form filling and leveraging the data to select widgets. A subarea
of work has focused on smartwatch interactions. Study results in
[18, 35] show that text input is feasible on a smartwatch since users
average 20 to 30wpm(words per minute) on the small screen, indi-
cating that watches could be used for forms in the future. In [53],
Nebeling et al. take a different approach and employ crowdsourcing
to allow the watch user to write long essays. Recently, alternative
keyboards have been considered for text entry [21, 46, 55]. This
line of work can be used in combination with ours to improve text
entry on smaller devices.

6 CONCLUSION AND FUTUREWORK

In this paper we present Transformer, a system that designs an
optimized form for any given display dimension by leveraging form
database and minimizing a tunable cost function that models the
user’s difficulty. The database schema and distribution are used to
estimate the number of user interactions required, which serve as
input to the cost function. Our experimental evaluation showed
that the forms produced by Transformer effectively reduced the
completion time and were ranked higher than the original forms.
In terms of future work, we would like to focus on two areas:

(1) Autocompletion:When implemented for text fields, instead of
using the average length of the string, the length of longest
common prefix would be used to calculate typing cost. This
is mostly applicable for query forms, since in data entry
forms, the user could be making an unseen entry where
autocompletion might not work.

(2) Semantic Grouping: The manual forms often performed bet-
ter due to their semantic structure. In the future, both the
schema as well as label similarity can be analyzed for assign-
ing semantic costs. We also hope to extend our cost model
to capture aesthetics, such as finding the optimal distance
between fields or choosing color schemes.

ACKNOWLEDGMENTS

This work is supported by the NSF under awards IIS-1422977, IIS-
1527779, CAREER IIS-1453582.

REFERENCES

[1] AllMusic Advanced Music Search. https://www.allmusic.com/advanced-search/.

[2] Bootstrap. http://getbootstrap.com/.
[3] Boston University Roommate Matching Form. https://www.bu.edu/sth/

admissions/enroll/finding-housing-in-boston/roommate-matching-form/.
[4] Facilities Maintenance Request Form. https://s2f.osu.edu/.
[5] Hilton Room Reservation. https://www3.hilton.com/en/index.html/.
[6] Library Advanced Search. https://osu.worldcat.org/advancedsearch.
[7] Room Reservation Request. https://ohiounion.osu.edu/meetings_events/space_

requests/classroom_requests.
[8] United Airlines Flight Search. https://www.united.com/en/us/.
[9] U.S. Passport Application Form. https://pptform.state.gov/.
[10] S. Al-Megren. A predictive fingerstroke-level model for smartwatch interaction.

Multimodal Technologies and Interaction, 2(3):38, 2018.
[11] S. Al-Megren, W. Altamimi, and H. S. Al-Khalifa. Blind flm: An enhanced

keystroke-level model for visually impaired smartphone interaction. In IFIP
Conference on Human-Computer Interaction, pages 155–172. Springer, 2017.

[12] G. J. Badros et al. The cassowary linear arithmetic constraint solving algorithm.
TOCHI, 2001.

[13] G. Bailly, A. Oulasvirta, T. Kötzing, and S. Hoppe. Menuoptimizer: Interactive
optimization of menu systems. In Proceedings of the 26th annual ACM symposium
on User interface software and technology, pages 331–342. ACM, 2013.

[14] G. Bhatia, Y. Fu, K. Kowalczykowski, K. W. Ong, K. K. Zhao, A. Deutsch, and
Y. Papakonstantinou. Forward: Design specification techniques for do-it-yourself
application platforms. In WebDB, 2009.

[15] X. Bi, Y. Li, and S. Zhai. Ffitts law: modeling finger touch with fitts’ law. In
SIGCHI, 2013.

[16] F. Bodart and J. Vanderdonckt. On the problem of selecting interaction objects.
In BCS HCI, pages 163–178, 1994.

[17] S. K. Card. The psychology of human-computer interaction. CRC Press, 2017.
[18] B. S. Chaparro et al. Is touch-based text input practical for a smartwatch? In HCI

International 2015-Posters. Springer, 2015.
[19] K. Chen, H. Chen, N. Conway, J. M. Hellerstein, and T. S. Parikh. Usher: Improving

data quality with dynamic forms. IEEE Transactions on Knowledge and Data
Engineering, 23(8):1138–1153, 2011.

[20] K. Chen et al. Shreddr: pipelined paper digitization for low-resource organizations.
In ACM Symposium on Computing for Development, 2012.

[21] X. A. Chen et al. Swipeboard: a text entry technique for ultra-small interfaces
that supports novice to expert transitions. In UIST, 2014.

[22] Y. Chen et al. Adapting web pages for small-screen devices. Internet Computing,
IEEE, 2005.

[23] M. P. Couper andG. J. Peterson. Why doweb surveys take longer on smartphones?
Social Science Computer Review, 2016.

[24] B. Deka, Z. Huang, C. Franzen, J. Hibschman, D. Afergan, Y. Li, J. Nichols, and
R. Kumar. Rico: A mobile app dataset for building data-driven design applications.
In Proceedings of the 30th Annual ACM Symposium on User Interface Software and
Technology, pages 845–854. ACM, 2017.

[25] K. El Batran and M. D. Dunlop. Enhancing klm (keystroke-level model) to fit
touch screen mobile devices. In Proceedings of the 16th international conference
on Human-computer interaction with mobile devices & services, pages 283–286.
ACM, 2014.

[26] J. Falb, S. Kavaldjian, R. Popp, D. Raneburger, E. Arnautovic, and H. Kaindl. Fully
automatic user interface generation from discourse models. In Proceedings of the
14th international conference on Intelligent user interfaces, pages 475–476. ACM,
2009.

[27] U. Feige. A threshold of ln n for approximating set cover. JACM, 1998.
[28] P. M. Fitts. The information capacity of the human motor system in controlling

the amplitude of movement. Journal of experimental psychology, 47(6):381, 1954.
[29] M. Fleshman, I. Argueta, C. Austin, H. Lee, E. Moyer, and G. Gerling. Facilitating

the collection and dissemination of patient care information for emergency
medical personnel. In Systems and Information Engineering Design Symposium
(SIEDS), 2016 IEEE, pages 239–244. IEEE, 2016.

[30] K. Gajos and D. S. Weld. Supple: automatically generating user interfaces. In
Proceedings of the 9th international conference on Intelligent user interfaces, pages
93–100. ACM, 2004.

[31] K. Gajos and D. S. Weld. Preference elicitation for interface optimization. In
Proceedings of the 18th annual ACM symposium on User interface software and
technology, pages 173–182. ACM, 2005.

[32] K. Z. Gajos, D. S.Weld, and J. O.Wobbrock. Automatically generating personalized
user interfaces with supple. Artificial Intelligence, 174(12-13):910–950, 2010.

[33] K. Z. Gajos, J. O. Wobbrock, and D. S. Weld. Automatically generating user
interfaces adapted to users’ motor and vision capabilities. In Proceedings of the
20th annual ACM symposium on User interface software and technology, pages
231–240. ACM, 2007.

[34] K. Z. Gajos, J. O. Wobbrock, and D. S. Weld. Improving the performance of
motor-impaired users with automatically-generated, ability-based interfaces. In
Proceedings of the SIGCHI conference on Human Factors in Computing Systems,
pages 1257–1266. ACM, 2008.

[35] M. Gordon, T. Ouyang, and S. Zhai. Watchwriter: Tap and gesture typing on a
smartwatch miniature keyboard with statistical decoding. In Proceedings of the

https://www.allmusic.com/advanced-search/
http://getbootstrap.com/
https://www.bu.edu/sth/admissions/enroll/finding-housing-in-boston/roommate-matching-form/
https://www.bu.edu/sth/admissions/enroll/finding-housing-in-boston/roommate-matching-form/
https://s2f.osu.edu/
https://www3.hilton.com/en/index.html/
https://osu.worldcat.org/advancedsearch
https://ohiounion.osu.edu/meetings_events/space_requests/classroom_requests
https://ohiounion.osu.edu/meetings_events/space_requests/classroom_requests
https://www.united.com/en/us/
https://pptform.state.gov/

IUI ’19, March 17–20, 2019, Marina del Rey, CA, USA Protiva Rahman, Arnab Nandi

2016 CHI Conference on Human Factors in Computing Systems, pages 3817–3821.
ACM, 2016.

[36] J. He et al. A flexible content adaptation system using a rule-based approach.
TKDE, 2007.

[37] G. G. Hendrix et al. Developing a natural language interface to complex data.
TODS, 1978.

[38] P. Holleis, F. Otto, H. Hussmann, and A. Schmidt. Keystroke-level model for
advanced mobile phone interaction. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, pages 1505–1514. ACM, 2007.

[39] M. Jayapandian and H. Jagadish. Automated generation of forms-based database
query interface. VLDB, 2008.

[40] L. Jiang, P. Rahman, andA. Nandi. Evaluating interactive data systems:Workloads,
metrics, and guidelines. In Proceedings of the 2018 International Conference on
Management of Data, pages 1637–1644. ACM, 2018.

[41] B. E. John and D. E. Kieras. Using goms for user interface design and evaluation:
Which technique? TOCHI, 1996.

[42] J. Katriel. On a generalized recurrence for bell numbers. Journal of Integer
Sequences, 2008.

[43] K. Kowalzcykowski, A. Deutsch, K. W. Ong, Y. Papakonstantinou, K. K. Zhao, and
M. Petropoulos. Do-it-yourself database-driven web applications. In Proceedings
of the 4th Biennial Conference on Innovative Data Systems Research (CIDR?09).
Citeseer, 2009.

[44] C. Kulkarni and S. Kiemmer. Automatically adapting web pages to heterogeneous
devices. CHI’11, 2011.

[45] A. Lee, K. Song, H. B. Ryu, J. Kim, and G. Kwon. Fingerstroke time estimates
for touchscreen-based mobile gaming interaction. Human movement science,
44:211–224, 2015.

[46] L. A. Leiva et al. Text entry on tiny qwerty soft keyboards. In CHI. ACM, 2015.
[47] F. Li and H. Jagadish. Constructing an interactive natural language interface for

relational databases. VLDB, 2014.
[48] G. Li et al. Efficient type-ahead search on relational data: a tastier approach. In

SIGMOD, 2009.
[49] G. Li et al. Efficient fuzzy type-ahead search in tastier. In ICDE, 2010.
[50] Y. Li and T.-H. Chang. Auto-completion for user interface design, Aug. 16 2016.

US Patent 9,417,760.
[51] Y. Li et al. Nalix: an interactive natural language interface for querying xml. In

SIGMOD, 2005.
[52] MacKenzie et al. Text entry for mobile computing: Models and methods, theory

and practice. Human–Computer Interaction, 2002.
[53] M. Nebeling et al. Wearwrite: Crowd-assisted writing from smartwatches. In

CHI, 2016.
[54] B. Niamir. Attribute partitioning in a self-adaptive relational data base system.

1978.
[55] S. Oney et al. Zoomboard: a diminutive qwerty soft keyboard using iterative

zooming for ultra-small devices. SIGCHI, 2013.
[56] A. Peytchev et al. Web survey design paging versus scrolling. Public opinion

quarterly, 2006.
[57] A. Peytchev and C. A. Hill. Experiments in mobile web survey design. Social

Science Computer Review, 2010.
[58] S. E. Poltrock and J. Grudin. Organizational obstacles to interface design and

development: two participant-observer studies. ACM Transactions on Computer-
Human Interaction (TOCHI), 1(1):52–80, 1994.

[59] R. Popp, D. Raneburger, and H. Kaindl. Tool support for automated multi-device
gui generation from discourse-based communication models. In Proceedings of
the 5th ACM SIGCHI symposium on Engineering interactive computing systems,
pages 145–150. ACM, 2013.

[60] A. Quezada, R. Juárez-Ramírez, S. Jiménez, A. Ramírez-Noriega, S. Inzunza, and
R. Munoz. Assessing the target?size and drag distance in mobile applications for
users with autism. In World Conference on Information Systems and Technologies,
pages 1219–1228. Springer, 2018.

[61] D. Raneburger, H. Kaindl, and R. Popp. Strategies for automated gui tailoring
for multiple devices. In System Sciences (HICSS), 2015 48th Hawaii International
Conference on, pages 507–516. IEEE, 2015.

[62] D. Raneburger, R. Popp, and J. Vanderdonckt. An automated layout approach
for model-driven wimp-ui generation. In Proceedings of the 4th ACM SIGCHI
symposium on Engineering interactive computing systems, pages 91–100. ACM,
2012.

[63] D. Ritchie et al. D.tour: Style-based exploration of design example galleries. In
UIST. ACM, 2011.

[64] V. Roto et al. Minimap: a web page visualization method for mobile phones. In
SIGCHI, 2006.

[65] H. H. Sad and F. Poirier. Modeling word selection in predictive text entry. In
International Conference on Human-Computer Interaction, pages 725–734. Springer,
2009.

[66] C. A. Sanchez and J. Wiley. To scroll or not to scroll: Scrolling, working memory
capacity, and comprehending complex texts. The Journal of the Human Factors
and Ergonomics Society, 2009.

[67] A. Sears. Aide: A step toward metric-based interface development tools. In
Proceedings of the 8th annual ACM symposium on User interface and software
technology, pages 101–110. ACM, 1995.

[68] R. St Amant, T. E. Horton, and F. E. Ritter. Model-based evaluation of cell phone
menu interaction. In CHI, 2004.

[69] P. Szekely, P. Sukaviriya, P. Castells, J. Muthukumarasamy, and E. Salcher. Declar-
ative interface models for user interface construction tools: The mastermind ap-
proach. In Engineering for Human-Computer Interaction, pages 120–150. Springer,
1996.

[70] L. Tang, T. Li, Y. Jiang, and Z. Chen. Dynamic query forms for database queries.
TKDE, 2014.

[71] V. Tran, J. Vanderdonckt, M. Kolp, and S. Faulkner. Generating user interface from
task, user and domain models. In Advances in Human-oriented and Personalized
Mechanisms, Technologies, and Services, 2009. CENTRIC’09. Second International
Conference on, pages 19–26. IEEE, 2009.

[72] S. Vairamuthu, A. Anthoniraj, S. M. Anouncia, and U. K. Wiil. User interface
design recommendations through multi-criteria decision analysis. In Knowledge
Computing and Its Applications, pages 269–293. Springer, 2018.

[73] C. Vassilakis et al. Exploiting form semantics and validation checks to improve
e-form layout. International journal of Web engineering and technology, 2005.

[74] Wired Magazine. In Less Than Two Years, A Smartphone Could Be Your Only
Computer. http://www.wired.com/2015/02/smartphone-only-computer//.

[75] H. Wu et al. Seaform: Search-as-you-type in forms. VLDB, 2010.

7 APPENDIX

7.1 Proof of Theorem 1

The input of set cover problem (SCP) consists of a universe of
elementsU , a set of subsets S such that ∀s ∈ S, s ⊂ U and a weight
function that assigns a weight to each subset in S . A solution to
this problem is a set of subsets X ⊂ S such that each element ofU
belongs to exactly one element of X and weight of X is minimized
over all subsets of S .

Reduce Form Layout (FLP) to SCP: Given a form with n fields
f1, .. fn , we can map each field to an element in the universe of SCP,
that is

U = { f1, f2,, fn }

Each possible page layout can be mapped to sets in S of SCP:

∀x ∈ {1, ..,n}, si ∈ S, fx ∈ paдei =⇒ fx ∈ si , (2)

The weight of each si ∈ S is the sum of costs of each field in si as
defined in Equation (1):

weiдht(si) =
∑
f ∈si

costf (3)

A solution X to the minimum weight mutually exclusive SCP then
gives a minimum cost form layout where each si ∈ X is a page in the
minimum cost layout. Since the sets inX are mutually exclusive and
it is a cover, each field appears on exactly one page, and minimum
weight implies minimum cost.

Reduce SCP to FLP:Given an SCP instance consisting ofU , S,weiдht ,
each element in the universe becomes a form field in FLP.

F = { f1, f2,, fn } = U = {u1,u2,,un }

Each subset in S in SCP can be mapped to a page layout in Pages in
FLP, such that if u1,u2 are in the subset si ∈ S then, fields f1, f2 are
in paдei ∈ Paдes:

Pages = S
∀x ∈ {1, ..,n} : fx ∈ si =⇒ fx ∈ paдei (4)

Similarly the subset weights correspond to the page cost:
cost(paдei) = weiдht(si)

http://www.wired.com/2015/02/smartphone-only-computer//

Transformer: A Database-Driven Approach to
Generating Forms for Constrained Interaction IUI ’19, March 17–20, 2019, Marina del Rey, CA, USA

A solution X giving the minimum cost FLP is then a solution to
minimumweight exact SCP where each paдei ∈ X is corresponding
to si ∈ S is a part of the minimum cost layout.
Thus, a solution to SCP, which is a well known NP-Hard problem
[27], is necessary for finding the minimum cost form layout.

	Abstract
	1 Introduction
	2 Cost Model of Human Effort
	2.1 Types of Interactions
	2.2 Cost Function
	2.3 Problem Formulation

	3 The Transformer System
	3.1 Database Constraints
	3.2 Form Layout Generation
	3.3 Runtime Analysis

	4 Experimental Evaluation
	4.1 Cost Function Validation
	4.2 Performance
	4.3 Form Completion Times
	4.4 Error Rates
	4.5 User Ratings
	4.6 Discussion

	5 Related Work
	6 Conclusion and Future Work
	Acknowledgments
	References
	7 Appendix
	7.1 Proof of Theorem 1

