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Abstract Interactive query interfaces have become a

popular tool for ad-hoc data analysis and exploration.

Compared with traditional systems that are optimized

for throughput or batched performance, these systems

focus more on user-centric interactivity. This poses a

new class of performance challenges to the backend,

which are further exacerbated by the advent of new

interaction modes (e.g., touch, gesture) and query in-

terface paradigms (e.g., sliders, maps). There is, thus,

a need to clearly articulate the evaluation space for in-

teractive systems.

In this paper, we extensively survey the literature

to guide the development and evaluation of interactive

data systems. We highlight unique characteristics of in-

teractive workloads, discuss confounding factors when

conducting user studies, and catalog popular metrics
for evaluation. We further delineate certain behaviors

not captured by these metrics and propose complemen-

tary ones to provide a complete picture of interactiv-

ity. We demonstrate how to analyze and employ user

behavior for system enhancements through three case

studies. Our survey and case studies motivate the need

for behavior-driven evaluation and optimizations when

building interactive interfaces.
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1 Introduction

The recent data deluge requires input from various stake-

holders, such as business executives and physicians, who

are not necessarily trained in computer science. To al-

low these users to perform ad-hoc, iterative analysis

with instant feedback, a new class of interactive human-

in-the-loop systems are becoming increasingly common [3,

16,43,50,91,130]. These include systems for data clean-

ing and preparation [101,148], analysis [16,88,115,150,

158, 194] as well as visualization recommendation sys-

tems [57, 167, 176, 177]. Each of these systems consist

of a combination of query interface tools. For exam-

ple, Tableau [16] allows its users to compose queries via

text box (keyword search), slider (query by sliding), and

map (query by zooming and dragging). Further, each of

these query interfaces, e.g., crossfiltering [3], generates

a unique workload, which needs to be considered, indi-

vidually and in composition with other interfaces, when

evaluating and optimizing it.

This growth of interactive systems has been accom-

panied with an increase in touch-based (e.g., iPad, Mi-

crosoft Surface), and gesture-driven devices (e.g., Kinect,

HoloLens, Leap Motion). In 2018, 1.56 billion smart-

phones [11] and over 36.4 million tablets were shipped [22].

These patterns suggest that touch and gestures will

likely be the primary mode of data interaction in the

near future. In fact, recent work by multiple members

of the community has shown that touch devices can

be more usable and intuitive than mouse for data in-

teraction, and that the performance of gestural devices

can be considered comparable to mouse-driven interac-

tion [95,122,137,195].

Taking advantage of both touch and interactivity,

commercial tools such as Tableau Vizable [17] and Mi-

crosoft Power BI [14] provide touch-based data analysis.
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On the other hand, the rise of virtual and augmented

reality has popularized gestural querying in multiple in-

dustries, including automobile [5,163] and health care [18,

151]. This trend towards non-keyboard based interac-

tive data analysis motivates the need for a deeper study

into the workloads generated by these systems along

with methods for evaluating them. Evaluation is a crit-

ical component of building systems: optimizing the user

experience requires capturing the correct performance

metric.

Contributions and Outline: In this survey, we

first discuss salient features of evaluating interactive

systems which differentiate them from traditional database

queries. These include themes such as querying on touch

devices as opposed to a physical computer, interfaces

that provide continuous action, imprecise query intent,

and related querying in a session. Each of these fea-

tures poses challenges for data processing. They often

lead to a large number of queries being issued in a small

time frame and motivate the need for behavior-driven

optimizations. We discuss these issues and provide com-

pelling examples from related work in Section 2. In

Section 3, we provide a taxonomy of metrics used in

the literature and introduce two new ones to provide

a more complete picture of interactivity. We summa-

rize the metrics used by different systems in Tables 1

and 2 and provide guidelines on when a metric is rele-

vant in Table 3. The goal of this section is to introduce

the reader to certain metrics which they might not be

familiar with, especially from the HCI side. We cover

a wide-range of applications to expose different met-

rics, and as such cannot compare systems to provide

a state-of-the-art interactive system. In Section 4, we

summarize user study design criteria and methods for

avoiding bias during in-person studies.

Advanced readers, familiar with user studies and

metrics, can skip to Section 5, where we dive into guide-

lines for implementing behavior-driven optimizations.

We demonstrate these principles and the use of dif-

ferent metrics to inform system design through three

case-studies. The case studies cover a combination of

devices, interfaces and user behavior. They are meant to

provide examples of techniques for behavior-driven op-

timizations and not as benchmark results. They are or-

ganized as follows: Section 6 discusses techniques for op-

timizing the user’s inertial scrolling experience as they

are browsing through large query results. Section 7 dis-

cusses optimizations for coordinated brushing and link-

ing, an interface commonly used to get quick insights

from large multidimensional datasets. Section 8 studies

user behavior in composite interfaces containing map,

slider and text box querying. Sections 9 and 10 discuss

related work and conclusions.

2 Salient Features of Interactive Data Systems

Workloads generated by interactive systems have salient

characteristics that distinguish them from traditional

database workloads. These factors need to be taken

into consideration when selecting metrics for evalua-

tion. We describe these features here with relevant ex-

amples from literature.

2.1 Devices and Interfaces

Different input devices have different sensing rates for

user input, which directly affect the query issuing fre-

quency, i.e., number of queries issued per second. Fur-

ther, each device-interface combination generates a unique

workload. For example, one zoom action on a map inter-

face triggers two predicate changes (longitude and lati-

tude) in the WHERE clause. Range sliders tend to trigger

more intensive workloads (number of queries per sec-

ond) than text input since sliding typically takes less

time than typing. Two systems that account for this in

their evaluation are TouchViz [63] and DBTouch [122]:

– TouchViz [63] empirically evaluates two UI design

alternatives for touch-based devices. In their limi-

tations section, the authors acknowledge that since

their experiments are done on a touch interface, they

need separate experiments to see if the results hold

on mouse-based devices. They also mention that ad-

ditional studies are needed for expanding the design

to a multi-device interface.

– DBTouch [122] allows users to query databases us-

ing touch gestures. They process queries on a sam-

ple of the data as the user slides through values in
a column. The sample size is defined by the ges-

ture speed as well as the zoom level or the size of

the object. Thus, two parameters that are studied

in their evaluation include the gesture speed and the

object size, since changes to either affect the number

of objects processed. Such design decisions further

motivate the need for separate evaluations for de-

vices with different sensing rates or sizes.

2.2 Continuous Action

For touch and gesture devices [137] used in conjunction

with continuous manipulation query interfaces (e.g., slider,

linking and brushing) [62], the user’s query specifica-

tion has to be treated as a continuous process, with

each change triggering a query. In direct manipulation

systems, the whole process needs to remain interactive,

motivating the need for a strict latency constraint. The

fluid nature of this interaction generates heavy query
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workloads. Consider for example the case of crossfilter-

ing, where the user moves the slider continuously to

filter the dataset. If the interface detects events every

20ms, then every second about 50 queries are issued to

the backend from a single user. A common technique

for providing low-latency is prefetching. The following

examples employ prefetching for the use cases of ge-

ographic systems and visual data exploration, respec-

tively:

– In the geoinformatics community, Yesilmurat et al. [188]

introduced retrospective adaptive prefetching (RAP),

which leverages the user’s historical navigation pat-

tern to prefetch tiles. Measuring the effectiveness of

the algorithm requires a diverse set of user behavior.

To address this, user behavior is simulated as a se-

quence of navigations. In the database community,

ForeCache [36] is a similar system.

– Prefetching has also been used for visual data ex-

ploration in Doshi et al.’s 2003 SIGMOD paper [62],

which studies star glyphs, parallel coordinates and

dimensional stacking. Their evaluation also consists

of simulation studies with varying interaction pat-

terns. However, they perform additional validation

with 30 minute interaction traces from 20 users.

Thus, evaluating continuous action requires a se-

quence of interactions which can be sometimes be

simulated.

Another consequence of continuous action is that adja-

cent queries, i.e., those issued in adjacent timestamps,

usually return related or similar results since there is

usually only a difference of one condition (e.g., where

clause predicate) between them. This dependence can

be used for performance optimizations, as shown in Sec-

tion 7.

2.3 Ambiguous Query Intent

In exploratory data analysis, users often do not know

what they are looking for. This is characterized by state-

ments such as: “I can’t tell you what I want, but I’ll

know it when I see it”. The old assumption in database

systems that the user has a well-formed query is no

longer valid. Interactive systems thus need to guide

users to insights via instantaneous feedback and cues,

as demonstrated in the following examples.

– SeeDB [167] guides users to insights by showing

them interesting visualization, where interestingness

is measured as deviation from a reference visualiza-

tion. Comments from their user study evaluation

show that the system is able to provide a good

overview and a starting point for further analysis

of trends.

– GestureDB [137] is another gestural querying sys-

tem, similar to DBTouch. It approaches the problem

of maintaining interactivity in the presence of am-

biguity by anticipating the intended query through

classification of gestures.

Ambiguity of queries is further exacerbated by sensi-

tivity and jitter when using gestural devices, such as

HoloLens or LeapMotion. When a user interacts with

the mouse and touch devices, they are manipulating

physical objects. The presence of friction and force make

these interactions more accurate. However, on gestu-

ral devices, due to the absence of friction the interac-

tion process is highly variable and sensitive [95]. The

user’s difficulty in holding the cursor steady at a spe-

cific point is compounded with the sensor’s ability to

detect minor hand movements. These effects trigger un-

intended, noisy, and repeated queries, more frequently

than mouse and touch devices. Figure 11 shows the

trace for mouse, touch and gesture devices. Systems

need mechanisms to deal with these unintended queries.

We demonstrate one such mechanism in our case study

in Section 7.

2.4 Session Behavior

In interactive systems, the concept of sessions can be

leveraged. Compared to traditional database systems

where single independent queries were executed, in in-

teractive analysis, consecutive queries are often related.

This is because the user might be looking for a particu-

lar insight, or formulating their current query based on

results of the prior one. ForeCache [36] and Sesame [100]

are two systems that leverage session behavior:

– ForeCache [36] employs prefetching for fast visual-

ization of large datasets. Their user studies show

that the users’ actions are session/task dependent

and that large groups of users have similar behav-

ior. Thus by analyzing user study traces, the system

can be optimized for most users.

– Sesame [100] is another session-aware system that

achieves performance gains of up to 25x by reusing

results of previous queries, which is only available

in session-based querying.

3 Metrics

The first step of evaluating a system involves the selec-

tion of metrics, i.e., measures for assessing the system.
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Fig. 1: Metrics

Due to the heterogeneity of interactive systems, a va-

riety of metrics have been used in the past, some of

which we discuss here. This list is by no means compre-

hensive but is meant to be a starting point, new systems

might very well require additional metrics. We catego-

rize metrics as human and system factors, depending

on whether or not human involvement is required to

measure them, as shown in Figure 1.

3.1 System Factors

The metrics in this category capture various aspects
of the system and can be measured without involving

humans. While the traditional TPC benchmarks [19]

are ideal for transactional systems, they are inadequate

for human-in-the-loop systems. Performance metrics re-

main a top priority of interactive systems but measur-

ing max, median, or mean latency is not enough and

a richer set of metrics is required. We group system

metrics by frontend and backend.

Prior system metrics focus on backend factors, but

as mentioned in the previous section, for interactive sys-

tems the frame rate of the frontend affects performance.

To capture this, we introduce two novel frontend met-

rics: Latency Constraint Violation and Query Issuing

Frequency, and demonstrate their usage via case stud-

ies in the following sections.

3.1.1 Backend Metrics

Throughput: Throughput is a classic metric used to

measure database output, included in TPC-C and TPC-

E. It can be calculated as transactions, requests or tasks

per second. This metric is appropriate when building a

distributed system, such as the Atlas system [49]. At-

las employs load balancing among distributed servers

in order to visualize large scale temporal data. In At-

las’ evaluation, Chan et al. measure speedup as increase

in query throughput (i.e., number of queries processed

by database) over baseline (1 server) with increase in

number of servers.

Scalability: Scalability is another traditional performance

metric which refers to change in performance with in-

crease in data. There are two approaches for increas-

ing performance: one is scaling up which refers to in-

creasing the performance on a single machine (by in-

creasing CPU speed, moving to main memory) and

the other is scaling out which refers to splitting data

on multiple machines to parallelize computation. But

both of these methods provide improvement only up

to a certain level. This is seen in experiments of the

DICE (Distributed Interactive Cube Exploration) sys-

tem [98]. DICE performs speculative query caching based

on the faceted cube traversal model for distributed sys-

tems. Kamat et al. do a scalabililty experiment com-

paring decrease in execution time with number of dis-

tributed nodes. Their figure (Fig. 7 in [98]) show that

increasing past 8 nodes is enough to avoid thrashing,

but further increasing nodes provides diminishing re-

turns.

Splitting data across machines comes at the cost of

combining and aggregating these results before present-

ing them to the user. The cognitive ability of the user
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is the bottleneck here. Even if the system is able to

process large amounts of data, the user is only able to

consume a screenful. Thus, if the result is too large or

complicated, some form of summarization (e.g., group-

by, aggregates, etc.) needs to be done before presenting

it to the user. The bottle neck of summarization is also

demonstrated in DICE (Fig. 6 in [98]), where the cost of

evaluating additional WHERE clause conditions dominate

the benefits of selectivity (i.e., fewer tuples to process),

when increasing number of dimensions.

Cache Hit Rate: Cache hit rate refers to the number

of times results of a query were found in the cache.

This is an appropriate metric when designing caches or

employing speculative prefetching. Things to consider

include the location of the cache: frontend caches reduce

load on the database but they are hard to maintain due

to challenges in cache invalidation [131]. Backend caches

still have to pay for network latency, but have constant

execution time if an item is found in the cache.

In terms of caching strategies, eviction based poli-

cies such as least recently used and first-in first-out are

not as effective as predictive caching [36,98,164]. Cache

hit rate is measured by the Scout system [164]. Scout

proposes methods for content aware prefetching of spa-

tial scientific data and compares cache hit rate against

baselines in prior works. Additionally, they report re-

sults of sensitivity analysis of different parameters on

the cache hit rate.

Latency: While the above metrics are important, la-

tency is more critical for interactive systems since it

is directly perceived by the user [126]. Latency encom-

passes a lot more than just query execution time. It is
calculated from the moment the user hits submit till

they get back results. Depending on the system it can

include:

– Network Latency: Network latency encapsulates

the time it takes to send the request to the server

as well the time to send the response back to the

client. It can play a factor in distributed systems

for deciding where certain computations are done,

i.e., if the raw data or if the results of applying a

function to it should be transmitted [125].

– Query Scheduling Latency: This refers to the

time between when the system receives a query re-

quest to the time it starts executing the query. This

usually depends on the query planner and can lead

to cascading failures if new queries are issued before

prior ones finish executing [182]. There are opportu-

nities for optimizations here, if the user has moved

on in their analysis before their previous query has

begun executing (Section 7).

– Query Execution Latency: The traditional defi-

nition of latency, this refers to the actual time taken

to execute the query. When reported by itself, it can

be misleading since the total time can include the

other factors discussed here.

– Post-aggregation Latency: This refers to the time

taken to summarize, rank, bin, highlight, etc. results

before they are presented to the user [134]. In inter-

active systems, presenting aggregated results often

comes at the cost of maintaining lineage informa-

tion of the raw data points which led to the aggre-

gate [146].

– Rendering Latency: This is the time taken to ren-

der the results on the screen (Section 8).

By measuring latency at a finer granularity, optimiza-

tions such as prefetching (Section 8) or progressive ren-

dering can be applied [70]. The latter refers to incre-

mentally presenting partial results to the user until the

complete results are available. Examples of this include

online aggregation [85], where approximate results with

increasing accuracy over time (by increasing sample

size) are presented to the user. Incvisage [150] is an-

other such example, where a coarse approximate of a

visualization is shown to the user, which gradually re-

fines to the final visualization, while maintaining the

salient features of the visualization at every step.

The goal of measuring latency in interactive sys-

tems is to ensure that the user has a seamless expe-

rience and is not kept waiting for results. The above

metrics measure the system latency, but to define an

acceptable threshold for what is considered interactive,

the user’s perceptual latency needs to be quantified.

There have been multiple studies in the HCI and vi-

sualization communities to quantify this, however the

threshold is often task specific. These numbers can be

used to avoid wasting computational resources if there

is no benefit to the user.

– Visual Analysis System: Liu and Heer [126] find

that adding a 500ms delay to interactive visual an-

alytic systems is noticeable to users and has a nega-

tive effect on the user’s analyses. Further, exposure

to the delay in initial stages has a detrimental ef-

fect which remains even when the delay is removed

at a later stage. Thus, an additional 500ms is per-

ceivable, but it is unclear if a lower threshold is also

perceivable.

– Head Mounted Devices: Nelson et al. [138] study

the effects of time delay for head mounted devices.



6 Protiva Rahman et al.

Participants are instructed to visually follow stimuli

presented to them for three conditions: base time,

base time+50ms, and base time+100ms. After each

experiment, participants are asked to fill a sickness

severity questionnaire (to assess feelings of nausea).

They find that base+50ms had the lowest sickness

score, and that total time and not time delay is the

main factor in user experience with these devices.

– Target Acquisition: Pavlovych et al. [143] study

the effects of latency and jitter on target acquisi-

tion and tracking with mouse. They find that tar-

get acquisition accuracy drops with latency above

50ms and tracking accuracy drops above a latency

of 110ms. This threshold might be relevant if users

issue queries that require drawing or moving a slider.

– Pointing Tasks on Touchscreens: Jota et al. [97]

study the effects of latency on direct pointing on

touchscreens. Participants are asked to touch a tar-

get on the screen and then note the latency of the

appearance of a rectangle on screen. They are fur-

ther asked to identify the lower latency interface in

pairwise tests. They find that participants are able

to identify a difference of 20ms in latency, but are

not able to perceive differences below that.

3.1.2 Frontend Metrics

Latency Constraint Violations (LCV): A key metric

which we find missing in prior work is perceived latency

violations. Currently, the state of the art involves mea-

suring the mean or max latency of queries. However, in

interactive systems the user issues a sequence of queries,

where a query is often dependent on results of the prior

one. For example, the user first scrolls left on a map

and then zooms in before results of the left scroll has

completed. There are two things that can happen, ei-

ther the system abandons the scroll and zooms in at

the point when the query is issued or the system first

completes the scroll and then zooms. In the first case,

the user has zoomed into an incorrect point, since the

scroll did not complete. In the second case, the latency

perceived by the user is the time to scroll plus the time

to zoom. The latency of individual scroll and zoom ac-

tions might meet the interactive latency requirements,

but added together they are violated.

Thus, measuring latency is not enough and we need

a metric that captures the violations which are per-

ceived by the user. In order to capture this stricter no-

tion, we introduce latency constraint violation (LCV).

Specifically, this metric counts the number of times the

zero latency rule is violated, i.e., the user perceives a

delay. We describe this metric in the context of two of

our case studies (Sections 6 and 7).

Execution TimeExecution Delay

Database IssuingUser Issuing

Q1

Q2

Q3

Q4

Latency

Interval

Get Result

Timestamp

Fig. 2: Latency Constraint Violation: Before Q1 finishes

its execution, Q2, Q3 and Q4 are already issued by

the user in the front-end. When executing Q4, there is

already the execution delay caused by previous queries.

Query Issuing Frequency (QIF): We refer to the num-

ber of queries issued per second as query issuing fre-

quency (QIF). Overtime the sensing rate for devices

has gone up: the iPad used to be at 30Hz, but has now

gone up to 120Hz with the Apple Pencil. This means

that the frontend has the capacity to send 120 queries

per second to the backend! While this provides smooth

interactions for the user, it comes with a trade-off. In

an ideal scenario, the backend should be able to han-

dle the high frequency. However, if the backend is slow,

then the high QIF can render it unresponsive. There is

then, a need to throttle the number of queries being sent
to match the backend capacity. This is because even if

the user issues queries at a high rate, they are limited in

the amount of information they can process, so progres-

sively presenting them with results is adequate. QIF is

thus a metric that should be measured for each system

on each device to make sure it matches performance of

the backend. We demonstrate this metric in Section 7.

3.2 Human Factors

Since interactive systems have a human-in-the-loop, it

is important to have metrics that capture the user ex-

perience. We refer to these as human factors since they

require user interaction for measurement. They include

quantitative as well as qualitative metrics.

3.2.1 Qualitative Metrics

Qualitative metrics such as open-ended comments or

feedback questionnaires can often provide deeper in-
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Fig. 3: Trade-offs with backend and frontend perfor-

mance

sights than just quantitative metrics, especially in the

preliminary development stages. However, they should

be accompanied by quantitative metrics to provide a

complete picture.

Design Study: Rather than a method of evaluation, de-

sign studies consist of extended interviews with prac-

titioners for task definition, i.e., in order to articulate

the problem space. These studies are meant for spec-

ifying user study tasks that simulate real world cases,

and sometimes even for gathering system requirements.

This is employed in the evaluation of Zenvisage [158],

where Siddiqui et al. first found a taxonomy of tasks

in the literature. Next, they met with seven data ana-

lysts for an hour to go over every step of their workflow

and to verify that the tasks defined in the taxonomy

matched experiences of the experts.

Focus Groups: Commonly used in market research, fo-

cus groups consist of small groups of people with a spe-

cific background or skill set whose opinion on a product

is required. Similar to design studies, such feedback can

be helpful in intermediate stages of system development

to get collective feedback on system features or design

decisions.

The focus group methodology is employed by Pat-

terson et al. [142] for ranking antibiotics for an empiric

antibiotic decision support tool [82]. The focus group

met for 60 minutes during which participants were re-

quired to use their expertise to come to consensus on

their antibiotic preferences for a hypothetical patient

condition.

User Feedback: User feedback through comments, sug-

gestions and survey can provide detailed insight on fu-

ture improvements and new features. They can be re-

ported as insight-based anecdotal comments, as reported

in Tensorboard evaluations [178] or as quantitative val-

ues through Likert scale scores. The Scented Widgets

system [175] employed a custom quantitative survey

and report the mean and standard deviation of scores.

The system usability scale [45] is commonly used for

measuring system usability [31]. Recently, the ICE-T

survey has been proposed for measuring visualizations [170].

3.2.2 Quantitative Metrics

Quantitative metrics consist of learnability, discover-

ability and usability, however, there are multiple flavors

of measuring usability.

Learnability: Learnability of a system measures how

quickly users are able to learn the functionalities of

a system after being taught to use it. A system that

is usable is not necessarily learnable. For example, the

controls in a cockpit are very usable, but training a

novice user to use it is a difficult task. Not all systems

are required to be learnable, it is dependent on tar-

get audience. A database administrator, for example,

would prefer writing SQL queries over doing joins with

gestures, hence gesture-based query interfaces have a

higher learnability requirement.

Gesture-based interfaces, such as GestureDB [137]

and DBTouch [122] are targeted towards non-technical

users and hence should be learnable. While this metric

is reported in GestureDB, it is not tested in DBTouch.

Another example of learnability is found in Kinetica [152],

a touch-based data exploration system. They compare

their system against Microsoft Excel, and for both cases,

users received a tutorial on functionalities of the system
they were testing, even if they were familiar with Ex-

cel. Thus, for learnability experiments, it is important

to ensure that the training is equalized across condi-

tions.

Discoverability: Discoverability measures how quickly

users are able to find user actions without instructions.

An everyday example of this is found in self check-in

airport kiosks, where the required information and in-

teractions are clear, even to first time fliers. For more

complicated systems, affordances, i.e., usage clues, can

be provided on the interface to make it easier for the

user to discover actions. Examples of affordances in-

clude blinking buttons or showing the direction of a

slide with a glimmer or color gradient. It goes without

saying that the same group of users can not be used

for learnability and discoverability experiments. An ex-

ample of a discoverability experiment can be found in

GestureDB [137].
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Table 1: Metrics for Data Interaction 1997-2012

Human Factors System Factors
User
Feedback

No. of
Insights

Task
Completion Time

Number of
Interactions

Latency Scalability Throughput

Online Aggregation, 1997 [85] X
Igrarashi et al., 2000 [92] X X
Fekete and Plaisant [71] X
Yang et al., 2003 [187] X
Plaisant, 2004 [144] X
Yang et al., 2004 [186] X
Seo and Schneiderman, 2005 [155] X
Kosara et al., 2006 [113] X
Mackinlay et al., 2007 [128] X
Scented Widgets, 2007 [175] X X
Faith, 2007 [68] X
Jagadish et al., 2007 [93] X
Yang et al., 2007 [185] X
Nalix, 2007 [121] X
Heer et al., 2008 [83] X
LiveRac, 2008 [130] X
Basu et al., 2008 [34] X
Atlas, 2008 [49] X X
Liu and Jagadish, 2009 [124] X
Woodring and Shen, 2009 [179] X X
Facetor, 2010 [104] X X X
Wrangler, 2011 [102] X X
Dicon, 2011 [47] X X
Yang et al., 2011 [184] X
Kashyap et al., 2011 [105] X
Fisher et al., 2012 [74] X
GravNav, 2012 [94] X X
Wei et al., 2012 [173] X
Dataplay, 2012 [23] X X
Zhang et al., 2012 [196] X
VizDeck, 2012 [109] X

Usability: Usability is a catch-all metric that is meant

to capture the ease of use of the system and is measured

in a variety of ways:

– Task Completion Time: Measured as the time

taken by the user to complete a system specific task,

an example of this is found in the Dataplay sys-

tem [23]. Their goal is to compare two proposed

features: autocompleted query correction and user

manipulation of the query tree. They use three tasks

with varying complexity which they quantify as the

number of tweaks. In the first task users are pre-

sented with a query tree of students who got As in

some courses and are asked to fix the query to find

students who got As in all courses. The second and

third tasks build on this with additional constraints.

– Accuracy: The old contract with databases was

that there is unbounded query execution time but

the results have to be accurate. In interactive sys-

tems, this is flipped, where we now have strict la-

tency requirements but accept approximate answers.

This metric is again only applicable for systems em-

ploying sampling or providing approximate answers,

which is one technique for handling interactivity in

large databases. It is used to capture the difference

of the approximate values from true values. There

are multiple methods for measuring accuracy in-

cluding precision, recall [148], mean-squared errors,

etc.

Accuracy is measured in Incvisage [150], a system

that uses sampling to show the user incrementally

improving visualizations. They compare the average

mean squared error across iterations against base-

lines. They also evaluate accuracy in their user study

where users are asked to find the min and max or

estimate average values from the visualization. The

scored accuracy measures the difference from the

correct value weighted by the time at which the user

submitted.

– Number of Interactions: The number of inter-

actions can be measured coarsely as iterations to
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Table 2: Metrics for Data Interaction 2012-present

Human Factors System Factors

User
Feedback

No. of
Insights

Task
Completion
Time

Accuracy
Learn-
ability

Discover-
ability

Latency
Scal-
ability

Cache
Hit
Rate

Skimmer, 2012 [160] X X
Scout, 2012 [164] X
Martin and
Ward, 1995 [129]

X

Bakke et al., 2011 [29] X X
GestureDB, 2013 [137] X X X X
Basole et al., 2013 [33] X X X
Biswas et al., 2013 [44] X X
MotionExplorer, 2013 [41] X
Yuan et al., 2013 [190] X
Ferreira et al., 2013 [73] X
Cooper et al., 2010 [55] X
Immens, 2013 [127] X X
Nanocubes, 2013 [123] X
Kinetica, 2014 [152] X X X
DICE, 2014 [98] X X X X
Lyra, 2014 [154] X X
Dimitriadou et al. [61] X X X
SeeDB, 2014 [167] X X X
SnapToQuery, 2015 [95] X X X
Kim et al., 2015 [111] X
ForeCache, 2015 [36] X
Zenvisage, 2016 [158] X X X
FluxQuery, 2016 [64] X
Voyager, 2016 [176] X
Moritz et al., 2017 [132] X
Incvisage, 2017 [150] X X X X
Data Tweening, 2017 [110] X X
Icarus, 2018 [148] X X X X
Datamaran, 2018 [39] X
Tensorboard, 2018 [178] X X
DataSpread, 2018 [39] X
Sesame [100] X X
Transformer, 2019 [149] X X X
ARQuery, 2019 [46] X

complete a task, as in the Icarus [148] system which

amplifies user’s input for filling in unreported data,

or as number of times an operator is applied, as

in the Facetor system [104] that reduces the user’s

navigation cost in faceted data exploration and re-

ports the number of times the expand and refine

operators are used. Similarly, the guided data re-

pair system [183] measures effort as the number of

times the user needs to give feedback to the system,

albeit via simulations. It can be used in combina-

tion with accuracy for computation on uncertain or

ambiguous data [72,191,192,193].

– Number of Insights: In order to simulate a real

world use case, Liu and Heer [126] ask users to per-

form exploratory analysis and report the number

of insights found. This metric should be used with

caution since what counts as an insight is subjective.

– Uniqueness of Insights: For exploratory systems,

allowing the user to make unique discoveries has

high value and this can be captured by uniqueness

of insights, as done in Scented Widgets [175].

Additional metrics for evaluating visualization systems

can be found in [117,136].

3.3 Metric Selection

Given the variety of metrics, it can be difficult to iden-

tify the most appropriate one for a new system. Metric

selection is application dependent and should highlight
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Table 3: Guidelines for Selecting Metrics

Type Metric When to Use

Human
Factors

Design
Study

For formulating system
specifications and
evaluation tasks

Focus
Group

To get consensus feedback
from a group

User
Feedback

Always

No. of
Insights

Exploratory systems that
provide user guidance

Uniqueness of
Insights

Exploratory systems that
provide user guidance

Task
Completion
Time

Task-based systems

Accuracy
Approximate and
speculative systems

Number of
Interactions

Systems that aim to reduce
user effort for a specific task;
usually in comparison
to a baseline

Learnability
Complex systems that will
be used frequently by experts

Discoverability
Systems designed for everyday
use by naive/untrained users

System
Factors

Latency
Constraint
Violation

Systems where multiple
queries are issued
consecutively in a
short time frame (Section 7)

Query
Issuing
Frequency

Devices with high frame rate.
(Section 7)

Latency Always

Scalability
Systems that deal with
large amounts of data

Throughput Distributed systems
Cache Hit
Rate

Systems that perform
prefetching

the contributions of the system. While there is no opti-

mal method for metric selection, there are certain best

practices for interactive systems:

1. It should cover atleast one metric from system and

human factors.

2. Systems targeted at domain specific tasks should

perform design studies and focus groups with end-

users to formalize needs and requirements.

3. End-users should be able to provide qualitative open-

ended feedback at different stages of development.

4. Approximate systems should evaluate accuracy trade-

offs with user effort and/or latency of the system.

Accuracy or cache hit rate is also recommended for

speculative prefetching systems.

5. Depending on if the system is being designed for

novice vs. experts, discoverability and learnability

should be measured respectively.

6. Systems aimed towards solving a specific task should

measure user effort in completing the task, which

can be in the form of task completion time, no. of

interactions or quality of insights (for exploratory

systems).

7. Distributed systems dealing with a large number of

datapoints should measure throughput and scalabil-

ity, along with summarization latency and cognitive

load on the user.

8. Gesture and touch-based devices with high-frame

rates, where multiple queries are issued one after

the other, should measure query issuing frequency

and latency constraint violations.

While we have covered a diverse set of metrics, it is

possible that newer systems and devices will require

novel metrics which have not been used before.

3.4 Takeaways

Tables 1 and 2 show metrics as used by different systems

and is meant to provide an overview of which metrics

occur together. For example the trade-off in accuracy

and latency is exemplified by the fact that latency is

always measured with accuracy (at least in the limited

number of papers that report it and have been included

in our survey). However, these tables should not be used

to compare systems in terms of their evaluation cover-

age since each system solves a different problems and

hence requires different metrics to convey its contribu-

tions. Table 3 summarizes the appropriateness of each

metric. In later sections we demonstrate metric selec-

tion and evaluation via case studies.

4 Confounding Factors during User Studies

As mentioned above, interactive systems often require

user studies as part of their evaluation. User studies

can be more complicated than system evaluations since

humans bring with them various biases and inconsis-

tencies which need to be accounted for, to draw sound

and reproducible conclusions. There is a wide body of

research in HCI and cognitive science that study these

factors in detail [27, 32, 69], here we discuss some com-

mon pitfalls and factors to consider when designing

studies. The interested reader should look deeper at

relevant references.

4.1 Study Design

There are various considerations when designing a user

study. We describe different design decisions, followed

by how they impact the user.
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4.1.1 In-person vs. Remote

User studies can take place in-person or remotely. In

an in-person setting, the study takes place in front

of the researcher. This provides the maximum amount

of control and observations to the researcher. The de-

vice used to test, external conditions such as noise,

the participant’s hand position, etc., can all be con-

trolled (e.g., [149]). Think aloud protocols also usually

require in-person studies (e.g. [126]). The main short-

coming of in-person studies is that it limits the number

and population of participants. Researchers usually do

not have resources to find diverse participants (non-

college students might require higher compensation for

their time).

In a remote setting, the study is done online, of-

ten through crowdsourcing platforms such as Amazon’s

Mechanical Turk [84]. This has opposite trade-offs to

the in-person case. It is possible to recruit a large and

diverse population, however, there is limited control

on external conditions. Another shortcoming is that

there could be cases of participants randomly select-

ing answers, which need to be filtered post-hoc [59].

This option is ideal when studying a specific popu-

lation phenomenon without comparing against a con-

trol (e.g., [56, 180]).

In-Person
Low Ecological Validity

Yes

Yes

Yes

No Remote
High Ecological Validity

Comparison 
Against 
Control?

Device-
Dependent?

No

No

Think Aloud 
Protocol?

Fig. 4: Guidelines for in-person vs. remote study design.

4.1.2 Within-Subject vs. Between-Subject

Another important design decision is whether to do a

within-subject or a between-subject study. In a within-

subject study, the same group of users are exposed to

a condition more than once such as doing the same

task in two systems, interacting with the same dataset

in two systems, or doing different tasks/datasets in the

same system. Such a design is needed when the task at

hand depends on some inherent ability of the user. For

example, when doing exploratory analysis, the defini-

tion of an insight is user-dependent. Thus, when com-

paring exploratory analysis systems, e.g., evaluation of

the Voyager system [176], the same set of users are re-

quired.

On the other hand, in a between-subject experi-

ments (e.g., Related Worksheets [29]), two sets of users

are employed such that each set is exposed to a unique

set of conditions. This design should be preferred when-

ever possible as it reduces carry-over effects (discussed

below). Users should be evenly split in a random man-

ner, to avoid any biases based on their demographics.

Effort should be made to equalize instructions and con-

ditions as much as possible between the control and the

test set.

4.1.3 Simulation

In certain situations, user traces can be used to simu-

late interactions on systems. This is appropriate when

results depend only on plausible user interaction se-

quences (e.g.,RAP [188], BinGo [38]). The time for each

interaction can then be estimated via various HCI mod-

els such as Fitts’, GOMS and ACT-R [42,48,75,96,161].

Different versions of the models are available for differ-

ent input modes [67, 87, 119], devices [25], and users

ability [26, 147]. The interactions in combination with

the appropriate model can be used to simulate user be-

havior and measure metrics such as session duration

and system latency for each interaction. This is demon-

strated in evaluation of the Usher system (Chapter 2 in

[52]).

Recently, there have been efforts in the community

towards creating a benchmark for interactive systems

by simulating user behavior. IDEBench [65] allows users

to create workloads, i.e., user interactions, based on pre-

defined navigation patterns, but this is not adequate for

all use cases. On the other hand, collecting and shar-

ing real user traces has its own challenges as outlined

in [35]. Thus, there are many caveats to the validity

of simulation studies, however, if appropriate, they are

more efficient than user studies.
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Between-Subject
High External Validity

Within-Subject
Low External Validity

Open 
Ended 

Feedback

Accuracy

No. of 
Interactions

Discoverability

No. of 
Insights

Quantitative 
Questionnaire

Task 
Completion 

Time

Learnability

Task 
Dependent 
on Inherent 

Ability of 
User

Simulations

Interactions 
are definitive 
and do not 

require user 
cognition

All possible 
navigation 

patterns can 
be tested

Fig. 5: Guidelines for study design based on metrics.

4.2 Study Validity

The design of a study affects its validity, i.e., the sound-

ness of its results. Padilla’s [141] position paper dis-

cusses three aspects to the validity of a user study.

4.2.1 Ecological Validity

Ecological validity refers to how closely the study condi-

tions match real-world use cases. There is a trade-off be-

tween the ecological validity of a study and the amount

of experimental control available to the researcher. A

study with high ecological validity would involve de-

ploying the system and logging user interactions dur-

ing real usage. In this case, the researcher is not able

to control for external conditions such as distractions,

lighting, study device, etc. Whereas if the study is done

in a controlled environment, it might not reflect real-

world usage scenarios. Identifying the ideal amount of

control while maintaining ecological validity depends on

availability of resources and contributions of the sys-

tem. If the system is an improvement on an existing

baseline, which is validated via a user study, then a set-

ting with finer control is more apt (e.g., [46]). On the

other hand, if the goal of the evaluation is to demon-

strate the usefulness of the various features of the sys-

tem, then a real-world study might be more appropri-

ate (e.g., [178]). In conclusion, real-world studies with

high ecological validity should be conducted if possible,

i.e., external conditions do not have a significant effect

on study tasks.

4.2.2 External Validity

External validity refers to the ability to generalize the

results of the study to populations outside of the ones

tested in the study. There is a trade-off between ex-

ternal validity and convenience of population sampling.

College students are a common population for in-person

studies due to their availability. In cases where a certain

level of expertise is required, a qualifying task can be

used in the recruitment process. Proxies such as enroll-

ment in a course [137] or self-reported skills via ques-

tionnaires [110] can be used to stratify users via skill

level. High external validity is required to ensure gen-

eralizability to the general public. However, certain sys-

tems are targeted towards specific users, such as domain

experts [148]. In these cases, it is enough to ensure that

the results are applicable to set of targeted users, and

efforts should be made to recruit only from the target

population [148]. Some threats to external validity in-

clude:

– Learning: As mentioned earlier, in a within-subject

study, each user is exposed to the same condition (task

or system) twice. This leads to the user doing slightly

better on the second system simply because they

are familiar with the task and due to no merit of

the system. In order to combat this, randomization

or counterbalancing can be used. In randomization,

the order in which a participant sees the control and

the test is randomly assigned(e.g., [158]). In coun-

terbalancing, participants are randomly assigned to

group 1 or group 2, and everyone in group 1 sees the
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Table 4: Cognitive Biases during User Studies, definitions in [60]

type bias mitigation measures

Participant’s
Biases

Social Desirability Bias: tendency of
humans to perform actions that will make
them likable to others, e.g., support the

researcher’s hypothesis

Follow externally approved scripted language
when interacting with study participants and

make every attempt to not disclose tested
hypothesis.

Anchoring Effect: fixating on a specific
piece of initial information and basing all

decisions on it, e.g., preference for the first
system the user is exposed to

Randomization and counterbalancing of
conditions

Halo Effect: positive characteristics based
on positive appearance. e.g., in a user

study questionnaires, participant rates all
aspects of a system highly because it looks

nice or has one good feature.

Break down study tasks into fine-grained task and
attempt to have every participant evaluate a

single feature.

Attraction Effect: clustering of points in
a scatter plot affect the user’s ability to

choose between items on the pareto
front [59]. This can affect a user’s accuracy
in visualization studies with scatter plots.

Modify study procedure: Example for mitigating
effect in scatterplots described in [59]

Experimenter’s
Bias

Framing Effect: selecting an option
because of how the sentence is framed,

e.g., researcher can influence the
participants’ choices by framing questions

to favor the system being tested.

Have study verbiage externally reviewed

Selection Bias: selecting participants
that are likely to perform favorably on the

condition being tested. For example,
selecting only iPhone users when the study

device happens to be an iPhone, even
though this is not representative of the

general population.

Randomly assign participants to the study, before
collecting any demographics/background

information which might affect their performance
in study

Confirmation Bias: tendency of the
researcher to see results that confirms their

hypothesis

Practice high transparency in results, e.g., make
study material/all user comments available

control and the test in the same order, while group 2

sees the opposite order (e.g., [176]). If different met-

rics are being tested for the same system, different

users should be employed as in the learnability and

discoverability experiments for SnapToQuery [95].

– Interference: In a within-subject studies, this refers

to the user’s performance on the second task being

affected due to exposure to the first task. This dif-

fers from learning in that their performance in the

second task could diminish. For example, if both

the control and the experimental system are new to

the user, they may perform poorly on the second by

confusing functionalities with the first. Again, ran-

domization or counterbalancing can help account for

this. However, if the effects are asymmetric, i.e., one

user shows improvement while the other one shows

deterioration, it makes it hard to draw conclusions.

– Fatigue: Long tasks can lead to users performing

poorly towards the end, due to fatigue. Hence, tasks

need to be broken into small chunks, with adequate

breaks in between (e.g., [30]).

4.2.3 Construct Validity

Construct validity refers to if the metric being used ac-

tually measures the correct factor. For example, in the

Transformer system [149] form completion time is used

as a proxy for physical effort, when a more fine-grained

metric such as number of interactions could have been

used. Similarly, the GOMS model [96] is often used for

estimating total completion time, including mental ef-

fort. Other studies use task completion time and accu-

racy as a proxy for mental effort [141]. However, there

are various standard methods to draw from the area of

cognitive science such as neuro-imaging and the dual-

task paradigm [162], which are more effective at mea-

suring cognitive load. The dual-task paradigm refers to

measuring the task productivity of a user in the pres-

ence of a secondary task in addition to the primary

interface query task [162]. Measuring the user’s physiol-
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Table 5: Case Study Summary. The case studies span different devices, interfaces, interaction techniques, and

queries.

name device
query

interface
interaction
techniques

trace query

inertial
scrolling

(Section 6)
touch(trackpad) scroll browsing

{timestamp, scrollTop,
scrollNum, delta} select, join

crossfiltering
(Section 7)

mouse,
touch(iPad),
gesture(leap

motion)

slider linking & brushing
{timestamp, minVal,
maxVal, sliderIdx}

count

aggregation

composite
interface

(Section 8)
mouse

textbox, slider,
checkbox, map

filtering & navigating

{timestamp, tabURL,
requestId,

resourceType, type,
status}

select, join

ogy using methods such as fMRI [166] and galvanic skin

response [139] are also options. These methods are more

expensive than measuring speed and accuracy, hence

there is a trade-off between construct validity and con-

venient metrics.

4.3 Cognitive Biases

Finally, humans have many cognitive biases which can

affect the validity of a study. Cognitive bias refers to

distorted representations of reality in the minds of in-

dividuals, which occur systematically and involuntar-

ily [60,81]. There are over one hundred and eighty cog-

nitive biases [40], only some of which might affect user

studies, most often in an in-person setting. While there

have been efforts to create frameworks to study them in

visualization [60, 165], they have not been discussed in

the context of user study evaluations. Cognitive biases

from the experimenter’s and the participant’s side are

summarized in 4, along with mitigation measures for

them. It is good practice to follow these measures for

all user studies.

5 Guidelines for Evaluation

There are a variety of metrics employed by systems

based on their use-case, but no set of standard met-

rics are adequate for capturing the whole picture, which

makes it difficult to compare two systems. Given the va-

riety of interfaces and their uniqueness outlined in Sec-

tion 2, this is understandable. However, comparisons

become easier if certain principles, such as the follow-

ing, are practiced when evaluating new systems.

1. System designers should take behavior-driven opti-

mizations into consideration, leveraging the user’s

session characteristics when designing and evaluat-

ing interactive systems.

2. Metrics should maximize the coverage of query types

(e.g., select, join, aggregation) and interaction

techniques [107, 156, 174, 189] (e.g., filtering, link-

ing & brushing), since each of these generate unique

workloads.

3. Evaluation should be done from a human as well as

a system perspective (Figure 1).

4. User study tasks should simulate real-world use cases

on real datasets to ensure high ecological validity,

because interactive systems are used everyday as

opposed to data warehouses used for business trans-

actions.

5. Participant order should be randomized between tasks

to minimize learning effects or interference and en-

sure high external validity.

6. Tasks should be granularized and its language ex-

ternally reviewed to mitigate experimenter and par-

ticipant biases.

7. When studying user behavior, some studies recom-

mend a minimum of 10 users [69,118]; however, this

number strongly depends on the nature of tasks and

variability of the interaction itself.

8. Evaluations should cover a variety of workloads, e.g.,

different scenarios, data distributions, data sizes,

etc.

We demonstrate these principles (except for the last one

which can be controlled synthetically [65]) by walking

through three case studies. The behaviors studied and
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metrics used in the case studies are summarized in Ta-

ble 6. Since our user studies do not require specific ex-

pertise, we do not report user profiles (e.g., age, gender,

major, etc.) for any of them.

5.1 Limitations of Case-Studies

Our case-studies are meant to provide concrete exam-

ples of applying behavior-driven optimizations in inter-

active systems and to demonstrate the new metrics we

proposed (latency constraint violation and query issu-

ing frequency). Consequentially, the following should be

kept in mind:

– The generalizability of the study results to other

users requires additional validation studies, and re-

mains to be tested. We report standard deviation

and ranges, wherever applicable, to give the reader

a sense of the variability of results.

– The case studies were selected to cover a variety

of devices, interface widgets and queries (Table 5).

The results are not meant to be representative of

other interactive systems and applications. In fact,

each application requires its own study to inform

behavior-driven optimizations based on its target

users. Our aim is to show how user behavior can

be translated to optimizations.

Table 6: Behaviors and Metrics in Case Studies

interface behavior performance

inertial
scrolling

scrolling speed
latency constraint

violation

(Section 6)
no. of

backscrolls
latency

crossfiltering sliding behavior
query issuing

frequency

(Section 7)
querying behavior

latency
latency constraint

violation

composite
query interface

exploration time
zooming

(Section 8)
dragging

data request time
filter conditions

6 Case Study 1: Inertial Scrolling

Inertial scrolling is used for browsing information when

the result set does not fit on screen [92, 160], which is

common for query results in large data warehouses as

well as in search engines. Inertial or momentum scrolling [135]

is a feature that helps users scroll smoothly and is

widely adopted in touch based devices, e.g., smartphones,

trackpads, etc. Its salient feature is that there is an ac-

celeration when the user scrolls. Further, when the user

stops scrolling, the screen stops gradually as opposed

to immediately as in traditional scrolling.

In scrolling interfaces, large result sets are impos-

sible to load at once since they do not fit in memory.

Moreover, the user cannot digest the entire result set

at once. Different loading strategies are used to address

this, such as lazy loading implemented using LIMIT and

OFFSET. We conduct a user study to collect scrolling

traces under ideal conditions, i.e., without loading la-

tency, and then use these traces to optimize loading

strategies.

Fig. 6: Inertial Scrolling Experimental Interface. High-

lighted section denotes movie selected by user.

Dataset: We selected the top rated 4000 tuples (similar

to the number of tuples used in prior studies [160]) from

the IMDB [7,12] movie dataset, with 6 attributes (poster,

title, director, genre, plot, rating). All tuples are preloaded

to the browser to avoid loading latency.

Task & Users: 15 users were asked to skim all 4000

tuples and select interesting movies by scrolling through

a MacBook [21] trackpad to increase ecological validity

of the study. Each user is trained on scrolling on the

touchpad before the task.

Trace & Query: For each scroll and wheel event, we
store the current timestamp, scrollTop [15] which is
the number of pixel scrolled upward, number of tuples
scrolled, and delta [4] which is the accelerated scroll
amount. The query can be a simple select query (Q1),
which selects 100 tuples every time:

SELECT poster, title || ’(’ || year || ’)’,

director, genre, plot, rating

FROM imdb

LIMIT 100 OFFSET 100

or a complex streaming join query (Q2) [103,168] when
the information comes from different streaming sources.
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SELECT poster, title || ’(’ || year || ’)’,

director, genre, plot, rating

FROM (

(SELECT id, rating

FROM imdbrating

LIMIT 100 OFFSET 100) tmp

INNER JOIN movie ON

tmp.id = movie.id

)

In the workload, we vary the limit and offset num-

bers for both queries.
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Fig. 7: Scrolling with / without inertia: The wheel delta

indicates the distance scrolled. As can be seen from the

plot, the user scrolls much faster with inertial scrolling

(y-axis scale: 400 vs 4), rendering lazy loading ineffec-

tive.

6.1 Behavior Analyses

We study the scrolling speed and number of back scrolls

to capture the user’s difficulty in selecting targets.

Scrolling Speed: Figure 7 shows a representative wheel

delta (i.e., distance scrolled) against the timestamp from

part of one user’s trace. The figure indicates that the

user scrolls larger distances (y-axis scale: 400 vs 4) with

inertial scrolling than regular scrolling. Hence, tech-

niques such as lazy loading [37, 78], i.e., fetching more

items once the user reaches the bottom of the results

do not work. The user often reaches the end of the page

before items are loaded, which increases wait time and

reduces usability.

No. of Backscrolls: We also observed that the increased

momentum often causes users to scroll past a movie

that they want to select, requiring them to scroll back

to select it (Figure 9). These findings verify the needs

of designing interfaces that reduce information loss, as

discussed in previous research [92,160].
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Fig. 8: Scrolling Speed: Maximum and average scrolling

speed measured as the number of tuples and as pixels

per second for each user sorted by the maximum. Figure

b can be transformed into one with the number of tuples

per second when the height of tuple is different.
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Fig. 9: Comparison of number of selected movies and

number of movies selected with backscrolls. In some

cases, the number of backscrolls is larger than the num-

ber of selected movies, indicating that the user had to

scroll back and forth multiple times to select a movie.

This shows the need for additional usability optimiza-

tions with inertial scroll.

6.2 Evaluation

In this section, we evaluate query workloads generated

from the user study over PostgreSQL. For each query,

the reported query execution time is the maximum of

10 runs. To decide on number of tuples to fetch, we com-

pared {12, 30, 58, 80} tuples. These values correspond

respectively to lower bound of maximum, upper bound

of average, median of maximum, and mean of maxi-

mum scrolling speed (measured in no. of tuples) of 15

users (Table 7). We compare two alternative prefetching

strategies to lazy loading:

– Event fetch: For every scroll event, the system checks

whether there are enough prefetched items in cache.
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Table 7: Statistics for Scrolling Behavior

range, mean,
median of
maximum

scroll speed

range, mean,
median of
average

scroll speed

# pixels /
sec

[1824, 31517],
12556, 8741

[369, 4717],
1580, 848

# tuples /
sec

[12, 200],
80, 58

[2, 30],
10, 5

If not, then more items are prefetched. Since a scroll

event is triggered every 15–20 ms, this method adds

heavy computation burden on the browser. For our

experiments, we set cache limit to product of tuples

to fetch and query execution time.

– Timer fetch: Items are prefetched at regular time

intervals, e.g., 20 items every second. We set the

fetching interval to 1 second and fetch a fixed num-

ber of tuples.

Latency: An obvious metric for comparing these strate-

gies is latency in loading tuples, shown in Figure 10. As

can be seen event fetch is insensitive to the number of

tuples fetched and keeps at a reasonable latency ∼ 80

ms. In timer fetch, when number of tuples fetched is

low, faster users can wait up to ∼ 60 seconds. How-

ever, it decreases with increase in number of tuples and

achieves zero latency when the tuples fetched equals the

median of max scroll speed.
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Fig. 10: Average latency of 15 users over different num-

ber of tuples fetched. Event fetch is insensitive to the

number of tuples. Timer fetch decreases linearly reach-

ing zero latency at median of max scrolling speed.

Latency Constraint Violation: For inertial scroll, a la-

tency constraint violation happens if the number of tu-

ples scrolled is greater than the cumulative number of

tuples cached. This captures the number of times users

observe a latency, i.e., users have to wait for tuples to

load. Table 8 shows the number of users (out of 15) who

observed latency constraint violation. The total number

of constraint violations are also shown for each of the

four values of cached tuple sizes. For timer fetch, viola-

tions only occur in few users’ traces. When we increase

the number of tuples fetched, the number of violations

rapidly decreases. However, event fetch is less sensitive

to the number of tuples fetched since it only fetches

more tuples when the number of currently cached tu-

ples is less than the cache limit. Because of the accel-

eration, at some points, the number of tuples scrolled

may be greater than the number of cached tuples.

Table 8: Latency Constraint Violations for Event &

Timer Fetch: Almost all users had a violation for all

cache sizes for event fetch. For timer fetch, the number

of violations decreases with number of tuples cached,

and it performs better than event fetch in general.

# tuples fetched 12 30 58 80

# users (event) 15 15 15 14
# users (timer) 3 1 1 0
# no. of violations(event) 2203 840 457 167
# no. of violations (timer) 767 2 1 0

6.3 Takeaways

Through behavior analyses, we demonstrate that iner-

tial scrolling has a much heavier query workload (200

tuples per second) than traditional scrolling, requiring

optimizations in loading techniques. To address this, we

compare two prefetching techniques and show that by

picking the right parameters based on behavior analy-

sis, we can achieve zero latency. The results reported

here along with the generated workloads can be used

to optimize prefetching parameters for different screen

sizes and databases. The pixel statistics in Table 7 al-

lows the developer to calculate tuple ranges for differ-

ent layouts. Thus, new interfaces that change the result

of user interaction, i.e., in this case queries generated,

require a study of user behavior to inform design deci-

sions.
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Fig. 11: Traces of a user specifying a range query on three devices: The leap motion presents more jitter than

mouse and touch.

7 Case Study 2: Crossfiltering
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Fig. 12: Crossfiltering Interface. Each histogram corre-

sponds to one attribute and range slider. The blue indi-

cates the filtered range for each attribute. Histograms

for other attributes are updated synchronously while

the user is manipulating one slider.

Crossfiltering (or brushing-and-linking [107]) is a

popular visualization concept which allows users to is-

sue multi-dimensional filters to a subset and explore the

dataset in a coordinated view arrangement [3, 95, 123,

127,172]. This interface is used to quickly gain insights

from large multidimensional datasets, instead of having

to wait for hours to get results from a query [99, 133].

Figure 12 shows the UI for our experiments, where

each histogram corresponds to one attribute and is con-

trolled by a range slider.

Dataset: We used a 3D road network dataset from the

UCI ML repository [20, 106], which has 3 attributes

(longitude, latitude and height) and 434,874 tuples.

Task & Users: We recruited 30 users (10 per device)

and asked them to specify range queries by moving the

handle to a specific position with mouse, iPad or Leap

Motion. The crossfiltering library [3] was used, which

can support extremely fast (<30ms) interactions for up

to one million records. Hence, users did not perceive

any query latency.

Trace & Query: For each sliding event, we collect the
current timestamp, value range, and slider index. At
each timestamp, two queries are issued concurrently.
Each query is used to calculate a histogram. One query
example is shown below:

SELECT ROUND((y - 56.582) / ((57.774 - 56.582) / 20)),

COUNT(*)

FROM dataroad

WHERE x >= 8.146 AND x <= 11.2616367163

AND y >= 56.582 AND y <= 57.774

AND z >= -8.608 AND z <= 137.361

GROUP BY ROUND((y - 56.582) / ((57.774 - 56.582) / 20))

ORDER BY ROUND((y - 56.582) / ((57.774 - 56.582) / 20))

Configuration: We run queries on PostgreSQL [13] and

MemSQL [9] on a Linux machine (Intel Core i5-4590

CPU @ 3.30GHz × 4, 15.6 GiB Memory). PostgreSQL

is a popular disk-based database while MemSQL is an

in-memory database. We choose these two databases

since we wanted to compare the interactive performance

for disk-based and in-memory databases. In Python,

the global interpreter lock ensures that only one thread

runs in the interpreter at once [6]. In order to issue

multiple queries at the same time, we fork and execute

multiple Python processes at the same time, where each

process has an independent database connection.

7.1 Behavior Analyses

For the crossfiltering interface, we study the sliding be-

havior, i.e., the manner in which the user interacts with

the sliders, and how this affects the querying behavior,

i.e., the manner in which queries are issued.
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Sliding Behavior: Figure 11 shows representative traces

on three different devices from the same user. As seen

on the trace, Leap Motion triggers unintended gestures,

resulting in heavy workloads from noisy queries.

Querying Behavior: Since crossfiltering uses sliders as

the query interface, queries are issued one after an-

other as the handle is moved continuously. When the

user interface frame rate per second is 20ms, every sec-

ond about 50 queries are issued. In coordinated views,

such as crossfiltering, about 50(n−1) queries are issued,

where n is the number of dimensions, leading to heavy

workloads. We propose two optimization algorithms to

reduce this: Skip and KL Optimization, which can be

applied to any interface that has high query frequency.

Skip: In crossfiltering, no dependency exists between

adjacent queries, since each represents a separate range

query, and unlike inertial scroll where the user browses

serially, a user does not necessarily look at ranges se-

rially. Thus, queries can be skipped to improve perfor-

mance. If the query execution time is high, the user

might have issued a second query before the first one

completes (Figure 2). Further, in exploratory data anal-

ysis, the user may abandon issued queries if initial find-

ings or partial results [85,150] do not match the hypoth-

esis being tested. In this case, previously issued queries

for that hypothesis should also be abandoned, i.e., the

current query run by the database may already have

been skipped by the user. Based on this, a natural op-

timization would be to skip previous queries once a new

one has been issued.

Algorithm 1 Optimization: Skip

1: for queryGroup in queryGroups do
2: # busy wait
3: while True do
4: if curTimestamp > queryGroup[’timestamp’]

then
5: # at same timestamp, multiple queries are is-

sued in coordinated view
6: sqls = queryGroup[’sqls’]
7: # proc1 and proc2 is used for synchronization
8: if proc1.value == 0 and proc2.value == 0

then
9: # fork multiple processes, run multiple

queries concurrently, subprocesses don’t block main pro-
cess

10: procPoll.map async(issueQuery, sqls)

11: break
12: curTimestamp = time.time()

KL Optimization: Most adjacent queries have same or

similar results, since users make iterative changes. Hence,

an alternative optimization would be to only execute

queries whose results differ to a certain extent from

the previous query. Hash-based methods [79], sampling-

based methods [51,76,145], wavelets-based methods [169]

etc. can be used for fast approximation of histograms,

i.e., result sets, without running the query. We use the

Kullback-Leibler (KL) [116] divergence to measure the

difference between two histograms, before queries are

sent to the database. If KL = 0, then the two histograms

are the same. We approximate KL by quantizing and

comparing histograms T and T ′ at each of the n bins:

KL(T , T ′) =

n∑
x=0

T (
x

n
)× ln(

T ( x
n )

T ′( x
n )

) (1)

In [181], the authors present initial work on measuring

human’s perception error of with KL, which can be used

to determine the KL threshold.

Algorithm 2 Optimization: KL Approximation

1: for queryGroup in queryGroups do
2: # busy wait
3: while True do
4: if curTimestamp > query[’timestamp’] then
5: sqls = queryGroup[’queries’]
6: id = queryGroup[’id’]
7: # KL function is used to calculate the KL be-

tween current query and previous query
8: if KL(id, preId) > KLThresh then
9: # fork multiple processes, run multiple

queries concurrently, subprocesses block main process
10: procPoll.map(issueQuery, sqls)

11: break
12: curTimestamp = time.time()

7.2 Evaluation

We evaluate query issuing frequency and latency over

three variable factors: database (PostgreSQL, MemSQL),

device (mouse, touch, leap motion), and optimization

method (raw, KL>0, KL>0.2, skip), where raw means

running all queries.

Query Issuing Frequency: To demonstrate the high frame

rate in interactive systems, we plot the frequency his-

togram of query issuing intervals from a representative

trace for each device. Figure 14 provides us with the

following insights:

1. The number of queries issued by leap motion is much

larger than mouse and touch (y-axis scale: 2500 vs

120), which verifies the instability and sensitivity of

this device.
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Fig. 13: Latency for Different Devices under Different Factors. MemSQL can maintain a latency 10∼50ms. After

some optimization (KL=0.2 or skip), PostgreSQL can maintain a latency 100∼1000ms. Leap motion has more

dense workload than the mouse and touch.
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Fig. 14: Frequency Histograms of Query Issuing Inter-

vals

2. If we only issue queries when there is a difference

in result sets (KL>0), we can drastically reduce the

number of queries issued.

3. Compared to the leap motion whose frequencies con-

centrate on 20ms - 25ms, the shape of the bell is

broader for mouse and touch. This indicates that

leap motion has a stricter latency requirement than

mouse and touch.

Latency: We plotted the latency of each user under

each condition and device, and show a representative

one in Figure 13. It is clear from the figure that Mem-

SQL can maintain a latency of 10∼50ms for all three

algorithms. For KL>0, it can maintain an interactive

performance ∼10ms. The skip strategy doesn’t work

better than the raw since the latencies of most queries

are below the query issuing intervals. On the other

hand, PostgreSQL’s latencies are beyond 10s for raw

and KL>0. When we skip queries and run queries with

KL>0.2, it can keep a latency 100∼1000ms (< 1sec).

0.0 0.2 0.4 0.6 0.8 1.0

Percentage

raw:mouse

raw:touch

raw:leapmotion

KL>0:mouse

KL>0:touch

KL>0:leapmotion

KL>0.2:mouse

KL>0.2:touch

KL>0.2:leapmotion

postgreSQL

0.0 0.2 0.4 0.6 0.8 1.0

Percentage

memSQL

Fig. 15: Percentage of Queries that Violate Latency

Constraint. KL>0 is enough to improve performance

in MemSQL, but KL>.2 is required for observable dif-

ferences in PostgreSQL.

Latency Constraint Violation: For crossfiltering, a la-

tency constraint is violated if the user issues a second

query before the results of the first are returned. This is

shown in Figure 2, where Q1, Q2, Q3 all violate the con-

straint since their execution time is beyond the query

issuing interval. Further, these violations cascade, since

the delay in Q1’s execution adds to the delay in Q2’s

execution and so on.

We evaluated the percentage of violations for the

skip and KL optimizations on the three devices and two
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databases, shown in Figure 15. As expected, MemSQL

has a lower percentage of violations than PostgreSQL.

When we issue queries with KL>0, we can reduce about

half of violated queries for MemSQL. For PostgreSQL,

however, queries have to be issued with KL>0.2, for

observable differences. In fact with KL>0.2, we achieve

30% decrease for mouse and touch and 17% decrease for

leap motion for PostgreSQL. We find that the running

times of the violated queries are between 150− 500ms

for PostgreSQL, and < 25ms on MemSQL.

7.3 Takeaways

First, we demonstrate that Leap Motion has more jit-

ter than mouse and touch, which can generate noisy,

unintended, and repeated queries. Second, by analyz-

ing the querying behavior, we propose two behavior-

driven optimization techniques – interface (skip) and

result-driven (KL>0 or KL>0.2). Through performance

experiments, we show that MemSQL can maintain in-

teractive performance even with raw workloads while

PostgreSQL can maintain subsecond performance after

some optimizations (skip or KL>0.2). This case study

motivates and demonstrates the use of behavior analy-

sis in system optimizations.

8 Case Study 3: Composite Interfaces

Most interactive systems [14,16] allow users to explore

datasets through composite interfaces, i.e., multiple query

interface widgets (e.g., text box, slider, map, etc.), which
we try to simulate in this case study. Multi-interface

querying is popular for browsing geo-spatial data [1],

which requires large-scale dataprocessing [36, 140]. A

key technique for improving performance in interac-

tive systems is speculative prefetching. Many methods

have been proposed for prefetching, such as Markov

chains [114, 120], heuristic methods [188], and data-

driven characteristics [36]. However, they have either

only been evaluated using synthetic workloads [114,120,

188] and prototype systems [114], or they have focused

on one query interface, like map [36,188], which is easier

to predicate than multiple query interfaces.

In this case study, we use a popular commercial ac-

commodation website – Airbnb [1](shown in Figure 16)

as the experimental setup since it satisfies the require-

ment of having multiple query interface widgets and is

freely accessible. Our goal in this case study is to ana-

lyze traces of the user’s interaction with different wid-

gets on a real commercial website, in order to inform

parameters on behavior-driven prefetching techniques.

Fig. 16: Airbnb Interface which incorporates different

query widgets, e.g., slider, map, etc.

They can also serve as a public benchmark to evaluate

current speculative prefetching techniques.

Task & Users: We recruited 15 students and asked them

to think of an ideal vacation and then use Airbnb to

book short-term housing for it. In order to get enough

traces, we asked users to spend at least 20 minutes on

it.

Trace & Query: We wrote a browser extension to col-

lect HTTP requests, tab URLs, and events. In order

to get a clean requests collection, we only collected re-

quests whose method was GET. For these requests, we

collected data, image, and map requests, ignoring other

requests such as status update. For each HTTP request,

we further recorded its request id, timestamp before the

request is made, timestamp after request is collected,

resource type (e.g., image, XMLHttpRequest, etc.), and

its URL. The Airbnb tab URL itself can be regarded as
a query:

https://www.airbnb.com/s/Alabama--United-States?page=1

&source=map&airbnb_plus_only=false

&sw_lat=27.73476540653654&sw_lng=-91.1290339635413

&ne_lat=36.80215351286778&ne_lng=-82.0982722447913

&search_by_map=true&zoom=6&checkin=12%2F14%2F2016

&checkout=12%2F18%2F2016&guests=3

&room_types%5B%5D=Entire%20home%2Fapt&price_min=10

&price_max=56&allow_override%5B%5D=

From this URL, we can get query parameters such as

place, check-in time, check-out time, map, southwest

longitude.

request rendering exploration request rendering exploration
T0 T1 T2 T0 T1 T2

URL Update URL Update URL Update

Fig. 17: Exploration Process
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8.1 Behavior Analyses

Exploration Process: The user’ s exploration process

can be modeled as shown in Figure 17. The session

starts when the tab URL is updated. Then the browser

waits for the data and resources of the request (request

time T0), and renders them (rendering time T1) once

they are received. Finally, the user spends some time

exploring the results and decides the next query (ex-

ploration time T2). We estimate the rendering time by

listening to mutation events (e.g., DOMNodeInserted,

DOMNodeRemoved, DOMSubtreeModified) [10] and record-

ing their timestamps.

Table 9: Percentages of Queries for Each Interface

interface map slider,
checkbox

button text box

percent 62.8% 29.9% 3.6% 3.6%

Query Interface: We report the percentage of queries

issued using each interface widget in Table 9. It shows

that the user prefers issuing queries with map as op-

posed to other interfaces. These percentages can be

used for informing weights in prefetching strategies,

e.g., more map tiles should be prefetched as opposed

to the next range for slider in cases where both are

available.

Zooming: Next, we analyzed the different zoom levels

used by users’ in their exploration, to find the most

common levels for prefetching. Figure 18 shows the change

of zoom levels over time, where each user is represented

by a color. It shows that except for one, users’ zoom

navigate at most, three level from their starting point,

so depths greater than three can be ignored when prefetch-

ing. The majority of users explore between levels 11 and

14. Most pre-computation efforts should thus concen-

trate on these levels.

Dragging: We further analyzed map dragging behavior

for a particular zoom level, focusing on levels 11–14,

since these were the most common. We facet over dif-

ferent zoom levels since, at different levels, the same

viewpoint size represents a different area size. Figure 19

shows the longitude and latitude change of the bound

center (i.e., average of the four bound corners) over the

time for different users. Table 10 summarizes this in the

form of ranges of latitude and longitude change. As we

can see, at deeper levels, users move smaller distances.
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Fig. 18: Change of Zoom Levels over Time for each

user, represented by a color. Zoom levels concentrate

between 11 and 14.

These statistics can be used to determine number of

adjacent tiles to prefetch as well as determine the ap-

propriate tile size.

Table 10: Ranges for Center of Bounds

zoom latitude longitude

11 [-0.10, 0.07] [-0.2, 0.2]
12 [-0.15, 0.07] [-0.2, 0.2]
13 [-0.05, 0.03] [-0.08, 0.05]
14 [-0.015, 0.013] [-0.02, 0.02]

Filtering Behavior: Figure 20 shows the cumulative dis-

tribution for number of filter conditions, i.e., frequency

of queries with 2 filters, 4 filters and so on. It shows that

70% of queries had four filters or less. Thus, it makes

more sense to cache results with upto 4 filter predicates,

which can be refined as more filters are used.

8.2 Evaluation

Figure 21 shows the cumulative distributions for the re-

quest and exploration times over all users. It shows that

80% of exploration time are greater than 1 second and

80% queries are completed in less than 1 second, which

indicates that at least one query can be fetched in most

cases. On average, the exploration time is 18.3 seconds

and the fetching time is about 1.1 seconds, which indi-

cates that about 18 adjacent queries can be fetched.
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Fig. 19: Change of Latitude / Longitude of the Bound Center over Time. Each color represents a different user.
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Fig. 21: Cumulative Distribution Functions (CDFs) for

Request and Exploration Time: The request time is

much lower than the exploration time indicating that

multiple speculative queries can be prefetched.

8.3 Takeaways

We demonstrate that the user prefers map and slider

widget over the others. When users manipulate the map,

they focus on zoom levels between 11 and 14. These ob-

servations can be used to provide guidelines for behavior-

driven techniques like prefetching. Our analysis of the

request and exploration time show that the system can

prefetch 18 adjacent queries on average and verify re-

quirements to speed up query specification. This case

study provides an example of the kinds of analysis re-

quired for composite interfaces.

9 Related Work

In this section we describe research that is related to

our case studies.

Data Interaction with New Computing Devices: With

the rise in popularity of multi-touch and gesture de-

vices, there have been several works on interactive data

exploration with multi-touch and gesture devices [86,

95, 122, 137, 152, 195]. Compared to mouse and key-

board, new computing devices provide better direct ma-

nipulation experience [157] and multi-finger interaction

(e.g., zoom in / out), etc. These systems include the

following:

– GestureDB [137] and DBTouch [122] are multi-touch

query interfaces which translate gestures into database

queries.

– Data3 [86] allows the user to manipulate the 3D

cube with the Kinect.
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– PanoramicData [195] is a multi-touch interface fo-

cusing on the machine learning and data analysis

algorithms.

– Kinetica [152] is a multi-touch interface allowing the

user to explore the visualization with physical affor-

dances.

– SnaptoQuery [95] allows the user to issue range queries

with gesture devices and shows that gesture devices

are comparable to the mouse and touch devices.

– Tableau Vizable [17] allows interactive data visual-

ization.

However, most of these works focus on usability. There

are no existing works for capturing the characteristics of

new query workloads, investigating possible behavior-

driven optimizations with new computing devices, and

evaluating the performance of databases with those in-

teractive workloads.

Interactive Performance: Liu and Heer [126] show that

an additional delay of 500ms can affect users’ explo-

ration behavior, i.e., it is necessary to keep an interac-

tive performance. Many methods have been proposed to

achieve this. Some systems fetch all data at once and

build their own cache or data management systems.

imMens [127] uses bin or grid aggregation and sustains

50 frames-per-second brushing & linking over billions

of records. Nanocubes [123] is proposed to construct a

data cube that is able to fit in a modern laptop’s main

memory. In SnapToQuery, a clustering-based method [95]

is proposed to approximate the query result.

Most of theses optimizations are specific to the sys-

tem and do not measure database performance, which

our case studies explore. General optimization tech-

niques have also been proposed, such as sampling-based [24,

98,159], prefetching [114,120,164,188], adaptive index-

ing [80, 89, 90], etc. However, these optimization tech-

niques do not take the users’ behavior into account.

Traditional Benchmarking & Optimizations: Benchmarks

are used to measure the performance of systems. [77]

surveys popular benchmarks and elaborates the need of

domain-specific benchmarks. Traditional benchmarks fo-

cus on the transaction processing performance, such as

TPC [19] and Wisconsin Benchmark [58]. They typi-

cally measure a throughput metric (work/second) and a

price metric which is a five-year cost-of-ownership met-

ric. Recently, with the increasing popularity of cloud

serving systems (e.g., Hadoop, Spark, etc.), benchmarks

have been proposed to evaluate their performance. Cur-

rent cloud benchmarks usually focus on one specific ap-

plication domain. For example, YCSB [55] focuses on

the online service. Others [2, 53, 54] focus on the real-

time analysis. BigDataBench [171] summarizes current

status of big data benchmarks and proposes a compre-

hensive benchmark spans offline analytics, online ser-

vice, and real-time analytics. Graph and RDF bench-

marks have also been proposed, e.g., LinkBench [28],

a benchmark based on the Facebook social graph. The

Linked Data Benchmark Council (LDBC) [8] was founded

a couple of years ago to establish benchmarks for eval-

uating graph data management systems.

Closer to our work, in their vision paper, Eichmann

et al. [66] elaborate on use cases for interactive data

exploration. They follow up on this in [65], which pro-

vides a benchmark for interactive systems. However,

these benchmarks and optimizations do not account

for the salient features of interactive query interfaces

on non-keyboard devices, and further, they do not con-

sider user-driven optimizations.

Also, as visualizations become a popular channel to

communicate results, there are some efforts in evalu-

ating the overlap between visualization and data sys-

tems [35]. Battle et al. [35] propose a standard model

for collecting traces. Finally, with the popularity of mo-

bile devices, benchmarks have been proposed to evalu-

ate data management in mobile systems [108,112].

10 Conclusion and Future Work

Interactive workloads present characteristics that are

different from traditional workloads, especially for new

devices and interfaces. In this paper, we talk about

both existent and emergent characteristics of interac-

tive workloads: difference between devices and inter-

faces, continuous actions, ambiguity in query intent,
and session behavior for adjacent queries. We catalog

different metrics used in the literature, both from a sys-

tems perspective and a HCI perspective. We further

discuss various pitfalls for user studies such as cognitive

biases and threats to validity. Based on these, we pro-

vide guidelines for behavior-driven optimizations and

evaluation of interactive systems and demonstrate these

through three case studies which span different inter-

action devices (mouse, touch, Leap Motion), query in-

terfaces (e.g., map, slider), interaction techinques (e.g.,

linking & brushing), and queries (e.g., select, aggregation).

Our case studies show that behavior analyses can help

system designers to build more responsive UIs and highly

performant backend systems.

There are several directions for future work. We in-

troduced a new metric, latency constraint violation, to

measure if a user perceives a delay from the system, and

demonstrated it in two of our case studies. However,

adapting this metric for other interactive systems re-

quires understanding of the internals of each, and hence
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a general purpose suite of this metric remains an open

problem.

The metrics discussed in this work concern perfor-

mance of the interface and backend. The other aspect of

evaluating the system involves its information presen-

tation and cognitive effect on the user. For example, a

system that provides too much information to the user

may be considered performant from the system’s stand-

point, but could be considered suboptimal from a user’s

standpoint. In our case studies, this applies to the skip

and the KL optimizations in crossfiltering. We need to

conduct user studies to see if users loose information

due to queries being skipped. This is especially true in

the KL divergence case because if the user is looking

for anomalies, the slight difference in result set might

be important. We have to work on methods for measur-

ing loss of information. Orthogonally, if an interface is

not designed well, it can lead to the user being disori-

ented and cognitively overloaded as reported in [153].

While we briefly discussed cognitive effort with respect

to construct validity (Section 4.2.3), measuring it in in-

teractive systems remains an open research area.
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