
Exploratory Visualizations of Rules for Validation of
Expert Decisions

Protiva Rahman, Jian Chen, Courtney Hebert, Preeti Pancholi, Mark Lustberg, Kurt Stevenson and Arnab Nandi

E

B
C

D

A

Fig. 1: Visualization of rules for filling in unreported microbiology data: (A) The blue circle nodes serve as navigation and show
entities to be filled, in this case antibiotics. Each entity node can be expanded to show relevant rule nodes, which are represented as
square nodes. (B) Rule nodes are labeled with predicates that the rule is conditioned on, while the node color encodes the value it
fills in. Rule relationships are depicted through colored edges: (C) rules with result overlap are shown in purple and conflicting rules
are shown in orange. (E) Each rule node also contains a data summary pop-up that shows how the dataset will be changed upon
applying the rule. Users can interactively accept/reject rules to resolve conflicts and redundancies.

Abstract—Rule-based techniques are common in domains that require explainability and interpretability, such as the health-sciences.
In certain cases, rules from multiple systems or humans have to be consolidated for consensus. When there is no objective function
to measure rule validity and the rule generation process can contain errors, human involvement is required for rule consolidation.
We present an interactive visualization system which allows users to explore relationships between rules, such as conflicts and
redundancies, and see how applying the rule would affect the data. Our design allows users to interactively resolve conflicts by
providing feedback on the correctness of each rule. Results of interacting with a rule are immediately applied to the data and redundant
rules automatically removed.

Index Terms—Clinical Informatics, microbiology, rule-based, visual database exploration, network visualization

1 INTRODUCTION

Recently, there has been an increased demand for transparency and
explainability [48, 58] in data-driven algorithms. In some cases, this
has led to a preference for rule-based techniques over machine learning

• P. Rahman, J. Chen, and A. Nandi are with the Department of Computer
Science and Engineering, The Ohio State University. Email: {rahman.92,
chen.8028. nandi.9}@osu.edu.

• C. Hebert, P. Pancholi, M. Lustberg, and K. Stevenson are with The Ohio
State University College of Medicine. E-mail: {courtney.hebert,
preeti.pancholi, mark.lustberg, kurt.stevenson}@osumc.edu.

techniques, even at the cost of accuracy [45]. Further, many machine
learning algorithms require human-in-the-loop intervention [21, 56].
Each of these interventions could be represented as rules and compared
across users. Similarly, noisy data quality could lead to different heuris-
tic optimizers or ensemble classifiers producing contradictory results.
Other scenarios where conflict resolution between rules is required
include consolidating policies across different government agencies,
or when results and guidelines of different medical tests suggest dif-
ferent treatment plans. Moreover, in certain cases, due to the nature
and domain of the task, machine learning is not an option at all and
expert input in the form of rules is required, e.g., prior to the stage when
hypotheses are formed [42]. All of these cases would need a human to
resolve conflicts and redundancies between rules.

DSIA: Data Systems for Interactive Analysis 
21 October 2018, Berlin, Germany



As a concrete example, consider the case of unreported microbiology
lab data, where multiple experts are required to arrive at consensus
on a set of rules for filling in the missing values [40–42]. Automated
methods cannot be used to impute the data due to the nature of the
missing data. Thus, each expert individually formulates a set of rules
while interacting with the data, which then have to be consolidated
by removing conflicts and overlaps. While the number of rules to be
consolidated will vary based on domain and number of missing values,
in the case of filling in a microbiology dataset with 75,000 cells [42], we
found that more than three hundred rules were written by three domain
experts and among these rules only ten were the same across the three
domain experts. Further, there is an inherent subjectivity to the process
and experts can make errors due to the complexity of the task. Rules
thus cannot be automatically resolved without expert involvement since
it is unclear which rule is correct. Resolving them with heuristics such
as majority vote is not an option either, since it is possible that multiple
experts missed an outlying case that was considered by a fewer number
of experts.

Hence, consensus from multiple experts is required to reduce bias
and errors. Having the experts go through a list of conflicting rules is
inefficient and cumbersome, because rules are conditioned on different
variables and can have partially conflicting result sets. Two conflicting
rules can both be accepted by the experts if their result sets are mostly
disjoint, but a decision must be made on which rule applies to the
overlapping result set, and that rule would have to be applied before the
other. Thus, rules need to be seen in context of other rules, along with
specific information on affected tuples. To address these, we build an
interactive rule visualizer that allows users to see rule relationships and
apply them in the correct order. While we describe our system in the
context of a microbiology dataset, it is applicable to other cases where
rules from multiple users, systems, models, etc. need to be consolidated
with a human-in-the-loop.

Our interactive rule visualizer makes the following contributions:

1. Analysis and abstraction of problems in consolidating rules from
multiple sources in the microbiology domain.

2. A visual encoding of rules and their related entities in collabora-
tion with microbiology experts.

3. A new design that allows for quick identification of rule relation-
ships such as conflicts and redundancies, and their impact on the
data in-place to avoid loss of context.

4. Our system allows users to interactively make decisions on rules,
which are immediately applied to the dataset. Redundant rules
are automatically removed, reducing the burden on the user.

2 RELATED WORK

Our work relates to prior systems in visualizing biological data, associ-
ation rule mining, graph and set relations.

Visualizing Biological Data: There are multiple systems that have
used visualizations to address specific problems in biological sciences.
The closest to our work in terms of data domain is Garcia-Caballero
et al. [20]’s visualization of antibiograms for clinical decision support.
Antibiograms contain the percentage of a particular organism species
that is resistant to an antibiotic, and are used for empiric antibiotic pre-
scription. They compare three visualizations: sunburst model, bipartite
graphs, and a tree model for the task of finding effective antibiotics.
Even though they deal with the same data domain, they are addressing a
different problem: they want to find the most effective antibiotic based
on known resistance as opposed to validating resistances based on rules.
Their methods are not applicable to visualizing rules, where we need to
show relationships between rules as well as group them by antibiotics.

Other rule-based visualizers include Smith et al.’s RuleBender [46],
which allows users to visualize the effects of rules on molecules for rule-
based modeling (RBM) use cases where models are used to simulate
cell signaling networks. Visualizing gene-interactions is addressed
in Wu et al.’s EinVis [55] system, which represents them in a tree
ring diagram and adjacency matrix simultaneously, using multi-view

VisBubbles [32]. While all existing systems take advantage of different
views to represent rules and their influence on each other, we use
embedded views so that useful information can be accessed in close
proximity in the same view.

Biological pathways is another common domain that requires re-
lationship visualization [26, 31, 60]. Zhu et al.’s PathRings [60] uses
linked sunburst visualization for pathways. Alternatively, Kashofer
et al.’s enRoute [26] uses a node-link diagram to highlight path rela-
tionships and show it in the context of associated experimental data.
Building on top of enRoute, Lex et al.’s Entourage system [31] parti-
tions pathways into small sub paths, allowing the user to focus on one
path. To enable better querying on paths, i.e. find paths connecting
nodes A and B, Partl et al.’s Pathfinder system [37] allows users to
visualize biological networks as node-link diagrams as well as ranked
lists based on query criteria. Other biological querying systems include
Partl et al.’s ConTour [38] system, which supports brushing and linking
across multiple drug discovery datasets and Wu et al.’s path querying
algebra [54], which allows users to query pathways through constructed
examples. While these methods are related to ours in that they display
and query interactive graphical information, they do not address conflict
resolution between rules.

Visualizing Association Rules: Another area of research has
focused on visualizing association rules. Blanchard et al.’s ARVis sys-
tem [9] allows the user to focus on one rule and see other relevant
rules which they refer to as neighborhood relations. Pilipczuk and Cari-
owa’s NovoSpark system [39] uses cloud images to see how features
affect a rule, and then use spectrum images to compare feature sets
in rules based on the feature’s importance. Treemaps [29], radial lay-
outs [18,28] and pyramids [27] have also been proposed for visualizing
frequent item sets. However, most of these works address the goal of
user validation of mined association rules purely based on the data,
as opposed to visualizing rules for updating values. Hence, they do
not allow the user to explore impacts of the rules or see relationships
between them.

Graph Visualization: There has been plenty of work on graph
visualizations [7, 23], with applications in dataflow [13, 49], distributed
computing [14, 35, 36], user-interfaces [16], and recently, deep learn-
ing [53]. Adapting from these, we use a node-link diagram since
the microbiology domain has inherent hierarchical classification, to
which we want to add rule relationships. While treemaps [12] allow
for more compact representation, it is difficult to represent additional
attributes other than the hierarchy on it. Zhao et al.’s Elastic Hierar-
chies [59] combine treemaps with node-link diagrams, however this
requires both dimensions to be hierarchichal and it is unclear how
conflicts would be represented. Wongsuphasat et al.’s TensorFlow visu-
alization [53] deals with challenges similar to ours in that nodes have
high degrees, with edges crossing each other. Their approach to this
involves bundling edges through nodes and removing auxiliary nodes.
Since edge bundling leads to loss of comprehension in our case, we
had to reduce the number of nodes initially presented to the user, allow-
ing them to interactively explore more relations. We use a collapsible
force-directed layout [19], a common technique for making graphs
more readable [1, 4, 5, 51], where all node positions are fixed on initial
load to allow users to maintain their mental models [34].

Recent work in graph visualizations includes Srinivasan et al.’s
Graphiti system [47], which allows users to interactively create node-
link diagrams by providing examples. This is an orthogonal problem to
ours, however their ideas can be used to extend our work, to allow the
expert to create the visualization that they want.

Visualizing Sets: Since rules can be considered as sets based
on the entities they update and the entities they are predicated on,
ideas from set visualization are relevant as well. Lex et al.’s UpSet
system [30] is a visualization system for set data that allows the user to
quickly see aggregates of intersections. This technique would allow us
to see rules with overlapping resultsets, which is equivalent to listing
conflicting rules, without providing context on the whole set of rules or
the data.



The state of the art in set visualizations is summarized by Alsallakh
et al. [3], which include Euler diagrams, overlays [15], node-link dia-
grams, matrices, aggregation, and scatter plot techniques. Rodgers et
al. [43] propose using linear diagrams for visualizing set intersection,
since these are easier for humans to identify and compare. Collins et
al.’s BubbleSets [15] use isocontours based on energy of items imposed
on pixels to show multiple set memberships, while Alper et al.’s Line-
Sets [2] use colored edges instead of contours. Dinkla et al.’s Kelp
diagrams [17] augment these by edge routing and finally, Xu et al.
further improve on them by using glyphs to encode overlap [57]. These
methods are not effective in cases where items belong to multiple sets
which are not spatially close to each other. Further, while they might
work for rule containment, they do not work for showing conflicts.

3 DOMAIN BACKGROUND

Our design addresses challenging issues in microbiology. Several
microbiology concepts or attributes are related to edges in our rule-
enabled network visualizations. For each culture (e.g., urine specimen),
collected from a patient sent to the microbiology laboratory for testing,
the laboratory reports the organism that is causing the infection and its
sensitivity to a subset of antibiotics. If an antibiotic works against an
organism, the organism is said to be sensitive to the antibiotic, otherwise
it is resistant to it. Thus, for each culture, the antibiotics that are tested
are reported as sensitive or resistant.

The subset of antibiotics which are tested depend on characteristics
of the domain and institutional preference. When using the data from
these reports for statistical analysis, sensitivities for a more compre-
hensive list of antibiotics, including the unreported ones, is desired.
Domain experts such as infectious disease physicians, microbiologists
and pharmacists are then needed to fill in these values through rules.
Experts use their domain knowledge and the reported sensitivities to
create rules that fill in the unreported values as sensitive or resistant.
Rules can be expressed as standard SQL update queries and presented
to the user as statements. An example user rule would be: E. coli is
resistant to Vancomycin, which corresponds to the following update
query:

UPDATE SET Vancomycin = resistant WHERE organism = E. coli;

Thus, each rule specifies a set of organisms that it applies to and
updates a set of antibiotics as sensitive or resistant. The organism set
can contain a single organism or be grouped by genus, species, family
or gram stain [42]. Similarly, the antibiotic set can contain a single
antibiotic or be grouped by antibiotic classes [42]. Along with being
conditioned on a set of organisms, a rule can also be conditioned on its
results to another antibiotic. For example, the rule, If Staphylococcus is
resistant to Cefazolin then it is resistant to Cefepime, would correspond
to the following update query:

UPDATE SET Cefazolin = resistant WHERE organism = Staphylococ-
cus AND Cefepime = resistant;

Thus, rules have at most two where clause predicates.
Since experts formulate rules individually, and there are multiple

ways to fill in the same values, they might select different sets of rules
but fill in the same values, giving a consensus dataset. In order to make
expert decisions reproducible, it is not enough to have a consensus
dataset; a set of consensus rules is also needed. Further, this allows for
privacy-preserving knowledge sharing, since rules can be shared among
institutions without sharing data. An automatic approach to consolidate
rules would be to extract rules from the consensus dataset using decision
trees, however, this is ineffective and still requires significant expert
intervention [40].

Thus, the set of rules specified by each expert has to be consolidated
by removing conflicts and redundancies. In this case, there are over
three hundred rules, which can be grouped by the antibiotics and organ-
isms it affects, but it is taxing for experts to go through this entire list
without being able to see relationships between rules and their impact
on the data. As an example of conflicting rules, consider the following:

• If an organism is resistant to Cefazolin then it is also resistant to
Ampicillin+sulbactam

• If an organism is sensitive to Penicillin then it is also sensitive to
Ampicillin+sulbactam

There could be a possible conflict between these two rules if there
are cultures which are resistant to Cefazolin but sensitive to Penicillin,
since the first rule would fill it in as resistant while the second one
would fill it in as sensitive. Hence, one needs to assign an ordering to
the rules or one of the conflicting rules needs to be discarded. Further,
when deciding on a rule, experts want to see its impact on the dataset.
For example, if there is more evidence in the reported data for the
second rule, i.e., most of the organisms that are sensitive to Penicillin
are mostly sensitive to Ampicillin+sulbactam, while there is an even
distribution for Ampicillin+sulbactam for those that are resistant to
Cefazolin, then they might be more likely to apply the Penicillin rule
first.

3.1 Data and Task Abstraction
Our dataset consists of a set of entities and rules. In most domains,
rules consist of the following three components: (1) a set of entities
it updates, which we refer to as result set entities, (2) the value it is
being updated with, and (3) a set of entities it is conditioned on, which
we refer to as predicate entities. Two rules can have overlap in their
predicate entities, in their result set entities and between the predicate
entities of one rule and result set entities of the other. In the first
two cases, the two rules can be conflicting or redundant, while the
third case shows a cascading dependency. While talking to a domain
expert on their experience in consolidating rules and observing four
experts (Hebert, Pancholi, Lustberg, Stevenson who are co-authors on
the team) at an hour long consensus meeting, we noticed that the last
case was not considered when selecting rules. Hence, we identified the
following tasks that needed to be addressed by our system:

1. Identify and resolve complete conflicts between rules by accepting
correct rules.

2. Identify and resolve partial conflicts and redundancies by assign-
ing an order to rules.

3. Compare updates made by rules against data that is available, i.e.,
has not been updated by rules.

3.2 Workflow
Before describing our design details, let us walk through an example
usage scenario of our tool. Lucy is a microbiologist who wants to
analyze newly collected lab results. She knows that Helen, Hannah
and Harold have individually formulated three sets of rules to fill in the
dataset and she needs to combine them to have a concise, correct and
conflict-free set of rules. She knows that using traditional approaches
would require her to compare the rule structure and result sets and go
through a list of conflicting rules (around hundred conflicting pairs for
our dataset). Further, if she wanted specific information on how the
rules affect the dataset, she would have to go back and forth between
the rules and the data.

Instead, Lucy decides to try our interactive rule visualizer (Fig-
ure 1). Upon navigating to the web application, Lucy first sees an
overview (Figure 7), showing the hierarchy of antibiotics in her dataset,
a view which she is familiar with. She decides to first tackle all rules that
fill in Ciprofloxacin, and thus double clicks on the Ciprofloxacin (Fig-
ure 1A) node which shows all the rules that affect it (Figure 4). She
then explores the rule that fills in Ciprofloxacin for the gram positive
group of organisms. She notices the pink positive node (Figure 1B),
which would fill in resistant for gram positives and Ciprofloxacin.
Double clicking this node shows the rule’s relationship to the other
Ciprofloxacin rules through colored edges (Figure 10). Lucy can imme-
diately see that it would subsume two other rules that fill in resistant for
Enterococcaceae and E. faecium, which are subsets of gram positive
organisms (purple edges shown in Figure 1C). Lucy also sees that it
conflicts with a rule that fills in resistant for Enterococcaceae (orange
edges shown in Figure 1D).



To make her decision, Lucy would like to know what the distribution
of resistant and sensitive is for Enterococcaceae and Ciprofloxacin in
the reported lab data. On clicking the two conflicting Enterococcaceae
nodes, their data summary modals appear (Figure 9), containing bar
charts showing the data distribution. The top row shows the distribution
in the reported data from the lab, the middle row shows the distribution
based on values filled in by other rules, and the bottom row shows
how the distribution would change on applying the current rule. Lucy
sees that there are slightly more Enterococcus in the data that are
resistant than sensitive and hence chooses to apply the rule that fills
in resistant for Enterococcaceae, by clicking on the accept button on
the modal (Figure 9). This automatically removes the Enterococcaceae
and E. faecium nodes since they will no longer fill in any values. She
likes this feature since this removes the burden of having to manually
reject them. The gram positive node still remains since there are gram
positives other than Enterococcus that still have missing values for
Ciprofloxacin. Lucy is confident about her decisions on rules since she
can easily interpret the decisions of her colleagues and immediately
apply them to this newly collected dataset.

Fig. 2: Rule Representation A: Nodes for each rule (pink and green
nodes), antibiotic (blue nodes) and organism (purple nodes). Grey
edges link predicates to rules, while colored edges link rule to the result
set entity.

4 METHODS

In this section, we describe our visualization design developed collabo-
ratively with microbiology experts and our algorithm for rule edits.

4.1 Rule Representation
First, we discuss our design decisions for representing rules, since this is
the main and most atomic component of our system. Since the domain
data, i.e., organism and antibiotics, has a semantic hierarchical structure
with which we want to associate rules, we use a node-link diagram to
represent them, in keeping with the experts’ mental model of the data.
Specifically, we use a directed force layout diagram [19], which tries
to optimize the layout by distributing vertices evenly and maintaining
uniform edge lengths by modeling nodes as charged particles and edges
as springs.

As mentioned in Section 3.1, there are three components to any
rule that need to be represented: the result set entity, the value it is
being updated with and the predicate entities. In our case, entities
consist of different antibiotics and organisms. These can be represented
in multiple ways. One possibility would be to create nodes for all
organisms and antibiotics, as well as nodes for rules. Each rule node
would then have a directed edge from it to the updated antibiotic,
with the color representing if the updated value was resistant (pink)
or sensitive (green). The rule node would also have incoming grey
edges from its predicates. In our application there are at most two
predicates (an organism and/or an antibiotic), but in a general case
there might be more. This representation is shown for forty-nine rules
of just four antibiotics in Figure 2. This view shows all the entities in
the dataset and any rules that are related will be connected through a

Fig. 3: Rule Representation B: Rule nodes have individual predicate
and result set nodes, with purple and orange edges showing conflicts
and redundancies between rules.

path. Thus, this visualization preserves and displays all the information
on rules. However, this view is already very complex, without explicitly
linking rule relationships through edges. Further, the user has to follow
up to three edges to interpret the complete rules and follow paths to
see rule relationships. Moreover, as the number of rules and predicates
increases, the degree of each entity node will increase. For example,
with eighty organisms and twenty antibiotics, we have a total of hundred
entity nodes. If there are three hundred rule nodes, where each rule node
is connected to at least two entities (predicate and result entity), then
each entity node has a degree of six, assuming a uniform distribution
of rules among entities. Since there are groups along two entity sets
(organisms and antibiotics), there are multiple edge crossings and it is
difficult to get insights.

Fig. 4: Rule Representation C: Rules represented as square nodes, with
predicates on label, color denoting the value, and connected via edges
to the entity being filled in.

To reduce the degree and edge crossings, another possible represen-
tation would include each rule node having its own predicate and result



nodes. For example, two rules that update the antibiotic Ciprofloxacin
would have an edge to two individual Ciprofloxacin nodes, while in the
prior representation, they were linked to the same node. The direction
of edges is the same as the prior representation, i.e., from predicates to
rule node and from rule node to result entity, with edge color represent-
ing rule value. While this increases the number of nodes, it significantly
reduces the number of edge crossings, since rules have individual entity
nodes. But with this simplification, we lose information on related rules
and need explicit edges for rule relationships. Thus, conflicting rules
are shown with an orange edge between them and rules that subsume
one another have a purple edge between them. This representation is
shown in Figure 3. While it improves on the prior representation, in
that insights can now be gained on related rules through clusters in the
graph, interpreting the rule still requires looking at three nodes, which
has high cognitive load.

To further simplify this, we decided to include the predicates in label
of the rule node, but have a separate node for the result entity. Hence,
all the result entities, i.e., antibiotics are represented as nodes, similar
to the first representation, but the predicates, i.e., organisms (and any
additional antibiotic) serve as the label of rule nodes. This is cleaner
than the first representation since rules are grouped only on the result
entity as opposed to result and predicate, reducing edge crossings.
This representation is also easier to interpret since only two nodes are
required for a rule, and if users are looking at a group affecting the
same result set, simply looking at the rule node is enough. Since we
have two node types, result entity and rule, we differentiate them with
shape: circle for entity nodes, and square for rule nodes, which is one of
Bertin’s [8] retinal variables for encoding nominal data. We use color,
a separate visual channel [8], to represent the value being filled in by a
rule: pink square nodes denote rules that fill in resistant while green
square nodes denote rules that fill in sensitive. This is the representation
that was selected, based on expert feedback.

Fig. 5: Navigation View A: All information on screen - rule relation-
ships showing clusters of result entities.

4.2 Navigation View
Given the chosen rule representation, the node-link diagram can still
be quite complex, with hundreds of nodes and edges. Following Shnei-
derman’s mantra of providing the user with an overview of the dataset
first [44] and details on demand, we use an overview/navigation view
to allow the user to choose what to explore. To ensure that the naviga-
tion view was comprehensible without overwhelming the user, we got
expert feedback on three different views.

The first view showed all rules and relationships as shown in Fig-
ure 5, in keeping with Tufte’s principle of increasing data density and

presenting all information to the user [50]. This view shows the user
clusters of rules that affect each other. Exploration through this naviga-
tion view would involve zooming into a cluster for a clearer view on
rules in the cluster. However, it is overwhelming and hard to read at
first glance. It takes time to process what items each cluster of rules
affects.

Fig. 6: Navigation View B: Small multiples view split by result entities.

In the second candidate view, to segment out rule-clusters by the
result entities, we use a small multiples view where each view shows
rules affecting a particular set of entities. This is shown in Figure 6.
Small multiples view is a common technique for simplifying complex
information, while maintaining data density [50]. Through this view it
is clear exactly which entities are affected by a set of rule. Even then
the cognitive load on the user is high.

Fig. 7: Navigation View C: Only entity nodes are initially visible, which
can be expanded to see rule nodes.

While the first two views used a bottom-up [52] approach where
all the rules are shown first and then zooming into a cluster, the third
view uses a top-down [44] approach. Shown in Figure 7, this view only
shows entity nodes, which can be expanded to see relevant rules. This is
another popular technique for simplifying complex graphs [53], where
nodes are clustered up to their parents and available on demand. This
view is the cleanest and lines up with the users’ domain knowledge.

Based on expert feedback (Section 4.2) the third view was chosen
as our navigation view. This approach reduces the cognitive load on
the user, since the number of entity nodes will be much less than the
number of rule nodes in most cases. This is because multiple rules will
usually apply to the same entity. Nodes are expanded in place without
triggering a recalculation of the force-directed graph, thus preserving
context and the users’ mental map of the visualization, a requirement
for interactive exploration [34]. To avoid recalculation, all nodes are
positioned when the visualization is loaded, but rule nodes are hidden.

4.3 Rule Relationships
Expanding an entity node shows all the relevant rule nodes, but see-
ing their relationships requires additional user interaction to maintain
simplicity of the graph. When a user is interested in a rule, they can
double click on the rule to see its relationship. Thus, the user is in



control of how much information they want to see. Rule relationships
are represented as directed edges, with edge color and stroke style
encoding the relationship type. Rule relationships can be of four types,
as shown in Figure 8:

1. Conflict: Two rules, which fill in opposite values either for the
same result set or where one result set is a subset of the other, are
said to be in direct conflict with each other. These relations are
denoted by solid orange links.

2. Subsumes: When two rules fill in the same value and one result
set is a subset of the other, the latter is said to subsume the former,
i.e. B⊆ A =⇒ A subsumes B. If the result sets of two rules are
identical and they fill in the same value, only one rule is shown.
These are represented as purple solid lines.

3. Partial Conflict: Two rules which fill in different values and the
result sets overlap, but neither one is a subset of the other, are
said to be in partial conflict with each other. This is denoted by a
dotted orange line.

4. Overlap: Two rules that fill in the same values and have overlap-
ping subsets, but neither one is a complete subset of the other, are
said to have an overlapping relationship. These are represented as
purple dotted lines.

Thus, relationship edges between nodes of the same color will be purple
while those between nodes of different colors will be orange.

Fig. 8: Relationships between rules: conflicts shown in solid orange,
partial conflicts shown in dotted orange, subsumes relation shown in
solid purple and overlaps shown in dotted purple.

4.4 Data Summary
Along with seeing relationships between rules, users want to ensure that
the rules for filling in unreported values match trends in the reported
values. Additionally, if a rule fills in a large number of values, users
might want to think more carefully about that rule. To enable such
comparisons, we allow the user to preview the number of affected tuples
and show the change in distribution of values. This is represented as
three horizontal bar charts on a pop up, as shown in Figure 9, and is
available on clicking on the rule node. The left side of the bar chart,
in pink, represents the number of tuples which are resistant and right
side in green represents the number of tuples which are sensitive. The
top bar corresponds to the reported values in the data, the second bar
corresponds to data filled in by other rules and the bottom one shows
the distribution upon application of the current rule. If no rules have
been applied, the first two bars are identical. The last bar adds the
number of missing cells that will be changed upon rule application.

Fig. 9: On clicking a rule node, users can see how the number of tuples
which are resistant versus sensitive will change upon rule application.
The top bar shows the numbers in the reported data, the second one
shows numbers filled in by other rules and the bottom bar shows the
distribution, if the current rule were to be applied. All numbers are
from a synthetic dataset. Users can also accept or reject a rule.

Thus, only one side of the bar will change depending on if the rule fills
in sensitive or resistant. The raw numbers are also shown on the bars.
Note that numbers shown in all images are from synthetic data.

While the bar chart representation is specific to rules that fill in
binary values, providing tooltips with more information on the data
is possible for most applications. The pop-up also contains the full
rule text and buttons for accepting or rejecting a rule. The meaning of
colors and bars is represented in a legend on the top of left corner of
the screen (shown in Figure 1).

4.5 User Interactions

The user is able to interact with the graph in multiple ways going from
the overview to increasing levels of detail, to get desired information,
before making a decision [51]:

1. Overview: At the navigation level, the user is able to drag a node
away from others before expanding it. Dragging a node also fixes
it to its position to better enable this. Users can thus bring nodes
of interest close together to compare.

2. Node Detail: From the navigation level, the user is able to expand
entity nodes by double clicking. This shows and hides relevant
rule nodes and also unfixes the node, so that entity nodes can be
dragged with the rule nodes.

3. Relationship Detail: At the next level, once rule nodes are visible,
single clicking on the rule node shows the data summary pop-ups,
while double clicking reveals relationships. This way the user is
able to first accept/reject rules based on the data, and additionally
see relationships if required.

4. Decision: From the data summary pop-up, the user can provide
decisions on the rule. Accepting a rule applies it to the entire
dataset and updates the numbers on relevant data pop-ups. It
automatically removes any conflicting or redundant rules from
the visualizations. Similarly, inferred rejections from rejecting a
rule are automatically removed.

4.6 Rule Updates

All the edges and data summaries are precomputed during page load.
This means all nodes and edge positions are designated at load time,
however only the entity nodes and edges are visible, until the user
expands these. When the user accepts a rule, any rules that conflicts
with or is subsumed by the accepted rule is removed, since the result
sets of these rules are now empty, having been filled with the accepted
rule. The data summary is updated only for rules that overlap or
partially conflict with the accepted rule. On rejecting a rule, rules that
subsume the rejected rule are also removed. That is, if a particular
rule is incorrect, any rule whose result set is a superset of it is also
incorrect. Pseudocode for rule acceptance and rejections are shown in
Algorithm 1.



Algorithm 1 Rule Decision

1: procedure ACCEPT RULE(A)
2: APPLY RULE(A)
3: update list←{A}
4: for node ∈ update list do
5: for B ∈ children(node) do
6: if node subsumes B or node conflicts with B then
7: update list.append(B)
8: end if
9: end for

10: Remove node
11: end for
12: for B ∈ nodes do
13: if A overlaps with B or A partially conflicts with B then
14: update data summary tab for B
15: end if
16: end for
17: end procedure
18: procedure REJECT RULE(A)
19: remove list←{A}
20: for node ∈ remove list do
21: for B ∈ parent(node) do
22: if B subsumes node then
23: remove list.append(B)
24: end if
25: end for
26: Remove node
27: end for
28: end procedure

5 EVALUATION

Our tool is built using Python’s Django web framework and MySql
database on the backend and HTML/Javascript and D3 [11] for frontend
visualizations. The colors for nodes and links were selected using Color
brewer [22]. In this section, we report feedback obtained as part of the
design process and the latency of our rule update algorithm [24].

5.1 Dataset
Three researchers on the study team (Hebert, Lustberg, Pancholi) cre-
ated rules as part of a data processing task for a microbiology urine
culture result dataset for patients admitted to the OSU Wexner Medical
Center between 2011-2016. This dataset, annotated with organism and
antibiotic classification information from the Unified Medical Language
System (UMLS) Metathesaurus [10], included over 10,000 cultures
and 50 antibiotics.

5.2 Design Process and User Feedback
We iteratively designed the tool based on expert feedback during the
design process. The first time, we got informal feedback on rule rep-
resentation, between the versions shown in Figures 3 and 4, since the
view in Figure 2 was incomprehensible. The representation in Figure 4
was preferred due to its simplicity.

During the second round we got feedback on the navigation views.
The three visualizations in Figures 5,6,7 were shown to one domain
expert. For each view, they were asked what they liked, what they
disliked, what information was not captured in the visualization and any
open-ended comments they had. They liked the third view showing the
antibiotic hierarchy. They found this view the easiest to navigate since
it matched their domain knowledge. The other two views were found
overwhelming and hard to process at first glance. We also learned that
the movement of the force layout was visually unpleasing and updated
our layout to decrease movement, as many other network evaluation
work has reported. They mentioned that they would like to get more
information on the impacted data.

In the third round, we showed them our final prototype and asked
them to find insights. Some examples of insights that they were able to
see are shown in Figures 10 and 11. In Figure 10, they could see a rule

Fig. 10: Insights gained from visualization: The overly general rule:
Staphylococcaceae are sensitive to Cephalosporins can be detected by
its conflict with the correct rule: MRSA is resistant to Cephalosporins.

Fig. 11: Nodes with multiple conflict nodes draw attention to areas of
subjectivity and disagreements. Whether Enterococcaceae organisms
are resistant or sensitive to Ciprofloxacin is a debatable topic.

conflict that revealed that one rule was overly general (Cephalosporins
cover all Staphylococcus aureus) which would be incorrect for the por-
tion of Staphylococcus aureus which is resistant to Beta-lactams (i.e.,
MRSA). In fact, the more general and correct rule would be that MRSA
is resistant to all Beta-lactams, shown by the purple edge. However, for
this insight, both the Beta-lactam and Cephalosporin nodes have to be
expanded. Along with identifying errors, areas of true disagreements
can also be seen in nodes with a high number of orange edges. This is
shown in Figure 11: there was no consensus among the experts on the
coverage of Enterococcus organisms for Ciprofloxacin.

5.3 Latency
Since users are interactively applying rules, we need our rule update
algorithm to maintain interactive performance. We simulated user
interactions by iterating through each of the rules and accepting if it was
a correct rule (provided by experts at a consensus meeting), otherwise
rejecting it. The average rule application latency over each rule decision
is 60ms, which is below the human threshold for perception [6]. Even
with network latency, the total time will be well under 500ms, which is
considered interactive [25, 33].

5.4 Discussion
While the expert liked the simplified antibiotic navigation view, it was
too much effort to expand out various nodes and then see relationships.
They would like hints on the overview nodes to see where they should
start. For example, we could change the size of the antibiotic nodes to
reflect those nodes which have the most missing data, or most rules, or
most number of conflicts. Further, when there is a relationship between
a visible node and an invisible node, the visible node can be linked to
the parent of the invisible node, alerting the user to expand the parent
node. In terms of improvements in design, the links can be changed to
tethered edges to better show the direction of relationships.

This visualization shows the rules at the top level and then allows the
user to get to the data. An alternate method would be to visualize the



dataset and then see which rules filled in outlying values in the dataset.
A controlled study comparing both these visualization techniques and
seeing which one allows the experts to resolve conflicts and errors the
quickest is another area we would like to explore.

We got positive feedback on the data summary pop ups, with com-
ments indicating that more detailed information such as specific organ-
isms affected would be helpful as well. After incorporating these edits,
we hope to do a formal evaluation of our tool where we will observe
the workflow of experts as they resolve conflicts in two new datasets
by selecting and rejecting rules until no conflicts or overlaps remain.

6 CONCLUSION AND FUTURE WORK

In this paper, we have described our design for visualizing relationships
between rules, which are used for many tasks such as data cleaning
and entity resolution. Our visualization provides a simple navigation
view which matches the mental model of users and then allows them to
expand nodes to see relevant rules. Details such as impact on dataset
and conflicts and overlaps with other rules are available on demand.
Through our system users can interactively find and resolve conflicts
and dependencies. Initial feedback on our system is positive and we
hope to do a formal evaluation after incorporating suggested changes.

Acknowledgment This work is supported by the NSF under awards
IIS-1422977, IIS-1527779, CAREER IIS-1453582, IIS-1302755, DBI-
1260765, DBI-1062057, CNS-1531491, NIST MSE-70NANB13H181,
and by the NIAID of the NIH under award R01AI116975.

REFERENCES

[1] J. Abello, F. Van Ham, and N. Krishnan. Ask-Graphview: A Large Scale
Graph Visualization System. IEEE transactions on visualization and
computer graphics, 12(5):669–676, 2006.

[2] B. Alper, N. Riche, G. Ramos, and M. Czerwinski. Design Study of
LineSets, A Novel Set Visualization Technique. IEEE Transactions on
Visualization & Computer Graphics, (12):2259–2267, 2011.

[3] B. Alsallakh, L. Micallef, W. Aigner, H. Hauser, S. Miksch, and P. Rodgers.
The State-of-the-Art of Set Visualization. In Computer Graphics Forum,
vol. 35, pp. 234–260. Wiley Online Library, 2016.

[4] D. Archambault, T. Munzner, and D. Auber. GrouseFlocks: Steerable
Exploration of Graph Hierarchy Space. IEEE transactions on visualization
and computer graphics, 14(4):900–913, 2008.

[5] D. Archambault, H. C. Purchase, and B. Pinaud. The Readability of Path-
preserving Clusterings of Graphs. In Computer Graphics Forum, vol. 29,
pp. 1173–1182. Wiley Online Library, 2010.

[6] B. P. Bailey, J. A. Konstan, and J. V. Carlis. The Effects of Interruptions
on Task Performance, Annoyance, and Anxiety in the User Interface. In
Interact, vol. 1, pp. 593–601, 2001.

[7] F. Beck, M. Burch, S. Diehl, and D. Weiskopf. A Taxonomy and Survey
of Dynamic Graph Visualization. In Computer Graphics Forum, vol. 36,
pp. 133–159. Wiley Online Library, 2017.

[8] J. Bertin. Semiology of Graphics: Diagrams, Networks, Maps. 1983.
[9] J. Blanchard, F. Guillet, and H. Briand. Interactive Visual Exploration

of Association Rules with Rule-focusing Methodology. Knowledge and
Information Systems, 13(1):43–75, 2007.

[10] O. Bodenreider. The Unified Medical Language System (UMLS): Integrat-
ing Biomedical Terminology. Nucleic Acids Research, 32(suppl 1):D267–
D270, 2004.

[11] M. Bostock, V. Ogievetsky, and J. Heer. D3 data-driven documents. IEEE
Transactions on Visualization & Computer Graphics, (12):2301–2309,
2011.

[12] M. Bruls, K. Huizing, and J. J. Van Wijk. Squarified Treemaps. In Data
visualization 2000, pp. 33–42. Springer, 2000.

[13] S. P. Callahan, J. Freire, E. Santos, C. E. Scheidegger, C. T. Silva, and H. T.
Vo. VisTrails: Visualization Meets Data Management. In Proceedings
of the 2006 ACM SIGMOD international conference on Management of
data, pp. 745–747. ACM, 2006.

[14] C. Chambers, A. Raniwala, F. Perry, S. Adams, R. R. Henry, R. Bradshaw,
and N. Weizenbaum. FlumeJava: Easy, Efficient Data-parallel Pipelines.
In ACM Sigplan Notices, vol. 45, pp. 363–375. ACM, 2010.

[15] C. Collins, G. Penn, and S. Carpendale. Bubble Sets: Revealing Set Rela-
tions with Isocontours over Existing Visualizations. IEEE Transactions
on Visualization & Computer Graphics, (6):1009–1016, 2009.

[16] E. Czaplicki. Elm: Concurrent frp for functional guis. Senior thesis,
Harvard University, 2012.

[17] K. Dinkla, M. J. van Kreveld, B. Speckmann, and M. A. Westenberg. Kelp
Diagrams: Point Set Membership Visualization. In Computer Graphics
Forum, vol. 31, pp. 875–884. Wiley Online Library, 2012.

[18] P. M. Dubois, Z. Han, F. Jiang, and C. K. Leung. An Interactive Circular
Visual Analytic Tool for Visualization of Web Data. In IEEE/WIC/ACM
International Conference on Web Intelligence (WI), pp. 709–712. IEEE,
2016.

[19] T. M. Fruchterman and E. M. Reingold. Graph Drawing by Force-directed
Placement. Software: Practice and experience, 21(11):1129–1164, 1991.

[20] H. Garcia-Caballero, M. Campos, J. M. Juarez, and F. Palacios. Visual-
ization in Clinical Decision Support System for Antibiotic Treatment. In
CAEPIA, pp. 9–12, 2015.

[21] A. Graham, Y. Liang, L. Gruenwald, and C. Grant. Formalizing Interrupt-
ible Algorithms for Human Over-the-loop Analytics. In Big Data (Big
Data), 2017 IEEE International Conference on, pp. 4378–4383. IEEE,
2017.

[22] M. Harrower and C. A. Brewer. ColorBrewer.org: An Online Tool for
Selecting Colour Schemes for Maps. The Cartographic Journal, 40(1):27–
37, 2003.

[23] I. Herman, G. Melançon, and M. S. Marshall. Graph Visualization and
Navigation in Information Visualization: A Survey. IEEE Transactions
on visualization and computer graphics, 6(1):24–43, 2000.

[24] L. Jiang, P. Rahman, and A. Nandi. Evaluating Interactive Data Sys-
tems: Workloads, Metrics, and Guidelines. In Proceedings of the 2018
International Conference on Management of Data, pp. 1637–1644. ACM,
2018.

[25] R. Jota, A. Ng, P. Dietz, and D. Wigdor. How Fast is Fast Enough?:
A Study of the Effects of Latency in Direct-touch Pointing Tasks. In
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pp. 2291–2300. ACM, 2013.

[26] K. Kashofer, D. Kalkofen, M. Streit, A. Lex, C. Partl, and D. Schmal-
stieg. enRoute: Dynamic Path Extraction from Biological Pathway Maps
for in-depth Experimental Data Analysis. In 2012 IEEE Symposium on
Biological Data Visualization (BioVis), pp. 107–114. IEEE, 2012.

[27] C. K. Leung, V. V. Kononov, A. G. Pazdor, and F. Jiang. PyramidViz: Vi-
sual Analytics and Big Data Visualization for Frequent Patterns. In 14th In-
ternational Conference on Dependable, Autonomic and Secure Computing,
14th International Conference on Pervasive Intelligence and Computing,
2nd Intl Conf on Big Data Intelligence and Computing and Cyber Science
and Technology Congress (DASC/PiCom/DataCom/CyberSciTech), pp.
913–916. IEEE, 2016.

[28] C. K.-S. Leung and F. Jiang. RadialViz: An Orientation-Free Frequent
Pattern Visualizer. In Pacific-Asia Conference on Knowledge Discovery
and Data Mining, pp. 322–334. Springer, 2012.

[29] C. K.-S. Leung, F. Jiang, and P. P. Irani. FpMapViz: A Space-filling
Visualization for Frequent Patterns. In 2011 11th IEEE International
Conference on Data Mining Workshops, pp. 804–811. IEEE, 2011.

[30] A. Lex, N. Gehlenborg, H. Strobelt, R. Vuillemot, and H. Pfister. UpSet:
Visualization of Intersecting Sets. IEEE Transactions on Visualization and
Computer Graphics, 20(12):1983–1992, 2014.

[31] A. Lex, C. Partl, D. Kalkofen, M. Streit, S. Gratzl, A. M. Wassermann,
D. Schmalstieg, and H. Pfister. Entourage: Visualizing Relationships be-
tween Biological Pathways using Contextual Subsets. IEEE Transactions
on Visualization and Computer Graphics, 19(12):2536–2545, 2013.

[32] G. Li, A. C. Bragdon, Z. Pan, M. Zhang, S. M. Swartz, D. H. Laidlaw,
C. Zhang, H. Liu, and J. Chen. VisBubbles: A Workflow-driven Frame-
work for Scientific Data Analysis of Time-varying Biological Datasets. In
SIGGRAPH Asia 2011 Posters, p. 27. ACM, 2011.

[33] Z. Liu and J. Heer. The Effects of Interactive Latency on Exploratory Vi-
sual Analysis. IEEE Transactions on Visualization & Computer Graphics,
(1), 2014.

[34] K. Misue, P. Eades, W. Lai, and K. Sugiyama. Layout Adjustment and the
Mental Map. Journal of Visual Languages & Computing, 6(2):183–210,
1995.

[35] D. Moritz, D. Halperin, B. Howe, and J. Heer. Perfopticon: Visual Query
Analysis for Distributed Databases. In Computer Graphics Forum, vol. 34,
pp. 71–80. Wiley Online Library, 2015.

[36] D. G. Murray, M. Schwarzkopf, C. Smowton, S. Smith, A. Madhavapeddy,
and S. Hand. CIEL: A Universal Execution Engine for Distributed Data-
flow Computing. In Proc. 8th ACM/USENIX Symposium on Networked
Systems Design and Implementation, pp. 113–126, 2011.



[37] C. Partl, S. Gratzl, M. Streit, A. M. Wassermann, H. Pfister, D. Schmalstieg,
and A. Lex. Pathfinder: Visual analysis of Paths in Graphs. In Computer
Graphics Forum, vol. 35, pp. 71–80. Wiley Online Library, 2016.

[38] C. Partl, A. Lex, M. Streit, H. Strobelt, A.-M. Wassermann, H. Pfister, and
D. Schmalstieg. ConTour: Data-driven Exploration of Multi-relational
Datasets for Drug Discovery. IEEE transactions on visualization and
computer graphics, 20(12):1883–1892, 2014.

[39] O. Pilipczuk and G. Cariowa. The New Module for Rules Discovering
and Visualization for NovoSpark® Visualizer software. Przeglad Elek-
trotechniczny, 91(11):197–200, 2015.

[40] P. Rahman, E. M. Hade, A. Nandi, P. Pancholi, M. Lustberg, K. Steven-
son, and C. Hebert. Derivation of Expert Consensus Rules for Missing
Antimicrobial Susceptibility Data. AMIA, 2018.

[41] P. Rahman, C. Hebert, and A. Nandi. Enabling Effective Data Interac-
tion for Domain Experts. In 2018 IEEE International Conference on
Healthcare Informatics (ICHI), pp. 465–466. IEEE, 2018.

[42] P. Rahman, C. Hebert, and A. Nandi. ICARUS: Minimizing Human Effort
in Iterative Data Completion. PVLDB, 11(13), 2018.

[43] P. Rodgers, G. Stapleton, and P. Chapman. Visualizing Sets with Linear
Diagrams. ACM Transactions on Computer-Human Interaction (TOCHI),
22(6), 2015.

[44] B. Shneiderman. The Eyes Have It: A Task by Data Type Taxonomy
for Information Visualizations. In Visual Languages, 1996. Proceedings.,
IEEE Symposium on, pp. 336–343. IEEE, 1996.

[45] R. Singh, V. V. Meduri, A. Elmagarmid, S. Madden, P. Papotti, J.-A.
Quiané-Ruiz, A. Solar-Lezama, and N. Tang. Synthesizing Entity Match-
ing Rules by Examples. Proceedings of the VLDB Endowment, 11(2):189–
202, 2017.

[46] A. M. Smith, W. Xu, Y. Sun, J. R. Faeder, and G. E. Marai. RuleBen-
der: Integrated Modeling, Simulation and Visualization for Rule-Based
Intracellular Biochemistry. BMC Bioinformatics, 13(8):S3, 2012.

[47] A. Srinivasan, H. Park, A. Endert, and R. C. Basole. Graphiti: Interac-
tive Specification of Attribute-Based Edges for Network Modeling and
Visualization. IEEE Transactions on Visualization & Computer Graphics,
(1):1–1, 2018.

[48] J. Stoyanovich, B. Howe, and H. Jagadish. Special Session: A Technical
Research Agenda in Data Ethics and Responsible Data Management. In
Proceedings of the 2018 International Conference on Management of
Data, pp. 1635–1636. ACM, 2018.

[49] D. Thompson, J. Braun, and R. Ford. OpenDX: paths to visualization;
materials used for learning OpenDX the open source derivative of IBM’s
visualization Data Explorer. Visualization and Imagery Solutions, 2004.

[50] E. R. Tufte. The Visual Display of Quantitative Information. Quantitative
Information, 1983.

[51] S. Van den Elzen and J. J. Van Wijk. Multivariate Network Exploration and
Presentation: From Detail to Overview via Selections and Aggregations.
IEEE Transactions on Visualization and Computer Graphics, 20(12):2310–
2319, 2014.

[52] F. Van Ham and A. Perer. Search, Show Context, Expand on Demand:
Supporting Large Graph Exploration with Degree-of-Interest. IEEE Trans-
actions on Visualization and Computer Graphics, 15(6), 2009.

[53] K. Wongsuphasawat, D. Smilkov, J. Wexler, J. Wilson, D. Mané, D. Fritz,
D. Krishnan, F. B. Viégas, and M. Wattenberg. Visualizing dataflow
graphs of deep learning models in TensorFlow. IEEE transactions on
visualization and computer graphics, 24(1):1–12, 2018.

[54] K. Wu, L. Sun, C. Schmidt, and J. Chen. Graph Query Algebra and
Visual Proximity Rules for Biological Pathway Exploration. Information
Visualization, 16(3):217–231, 2017.

[55] Y. Wu, X. Zhu, J. Chen, and X. Zhang. EINVis: A Visualization Tool for
Analyzing and Exploring Genetic Interactions in Large-scale Association
Studies. Genetic epidemiology, 37(7):675–685, 2013.

[56] D. Xin, L. Ma, J. Liu, S. Macke, S. Song, and A. Parameswaran. Accelerat-
ing Human-in-the-loop Machine Learning: Challenges and Opportunities.
In Proceedings of the Second Workshop on Data Management for End-To-
End Machine Learning, p. 9. ACM, 2018.

[57] P. Xu, F. Du, N. Cao, C. Shi, H. Zhou, and H. Qu. Visual Analysis of Set
Relations in a Graph. In Computer Graphics Forum, vol. 32, pp. 61–70.
Wiley Online Library, 2013.

[58] K. Yang, J. Stoyanovich, A. Asudeh, B. Howe, H. Jagadish, and G. Miklau.
A Nutritional Label for Rankings. In Proceedings of the 2018 International
Conference on Management of Data, pp. 1773–1776. ACM, 2018.

[59] S. Zhao, M. J. McGuffin, and M. H. Chignell. Elastic Hierarchies: Com-
bining Treemaps and Node-link Diagrams. 2005.

[60] Y. Zhu, L. Sun, A. Garbarino, C. Schmidt, J. Fang, and J. Chen. PathRings:
A Web-Based Tool for Exploration of Ortholog and Expression Data in
Biological Pathways. BMC bioinformatics, 16(1):165, 2015.


	Introduction
	Related Work
	Domain Background
	Data and Task Abstraction
	Workflow

	Methods
	Rule Representation
	Navigation View
	Rule Relationships
	Data Summary
	User Interactions
	Rule Updates

	Evaluation
	Dataset
	Design Process and User Feedback
	Latency
	Discussion

	Conclusion and Future Work



