Introduction
Informatics research analysis requires structured data

However, free-text documents contain valuable information

» Electronic Health Records (EHR)
» Biomedical Literature

Significant time and effort spent in manual data curation

Curators fill structured forms (e.g. REDCap) from free-text

Existing tools do not fit into curators’ workflow
» Require additional annotation
 Tailored for a single task (e.g. extracting gene)

Need semi-automated tool that accelerates data curation
o Extract and autofill form fields from free-text
* |mprove performance based on curator feedback

We present preliminary results of our extraction model
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Our model extracts form fields from EHR notes with 86% accuracy

Augmenting training data with synonym replacement improves 1 score

Focusing on relevant region decreases model training time without

Impacting accuracy

Incorporating our extraction model into a curation tool, e.g.,REDCap, will
significantly accelerate data curation and informatics research

Methods
Extracting each form field is a classification problem
* |nput: Text and form field
» Qutput: Classes correspond to form field values

Results
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BERT Accuracy Comparison: Finetuning BERT provides significant improvement over

* Multi-value fields (Cancer sites, genes) are binarized Google’s pretrained model. Slight improvement upon using EHR trained BERT
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Focused extraction: BERT takes max input of 512 words
* Longer text is split into multiple inputs

» Performance of zooming in on specific region
* |nput sizes of 100, 250, 512

Training Time(mins)

Focusing on location — comparison of input Augmented Dataset. Significant increase
sizes (labels). Minimal loss in accuracy for

75% decrease In

References

compute time

1. Ratner A, Bach SH, Ehrenberg H, Fries J, Wu S, Ré C. Snorkel: Rapid training data creation with weak supervision. In Proceedings of
the VLDB Endowment. International Conference on Very Large Data Bases 2017 Nov (Vol. 11, No. 3, p. 269).

2. Devlin J, Chang MW, Lee K, Toutanova K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding.

INNAACL-HLT (1) 2019 Jan 1.

iIn F1 score by increasing training set size
with synonym replacement

merican Association

VVVVVVVVVV
IIIIIIIIII

EEEEEE



