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Abstract	
Digitization	of	health	records	has	allowed	the	healthcare	domain	to	adopt	data-driven	
algorithms	for	decision	support.	There	are	multiple	people	involved	in	this	process:	a	data	
engineer	who	processes	and	restructures	the	data,	a	data	scientist	who	develops	statistical	
models,	and	a	domain	expert	who	informs	the	design	of	the	data	pipeline	and	consumes	its	
results	for	decision	support.	While	there	are	multiple	data	interaction	tools	for	data	scientists,	
few	exist	to	allow	domain	experts	to	interact	with	data	meaningfully.	Designing	systems	for	
domain	experts	requires	careful	thought	because	they	have	different	needs	and	
characteristics	from	other	end-users.	There	should	be	an	increased	emphasis	on	the	system	
to	optimize	the	experts’	interaction	by	directing	them	to	high	impact	data	tasks	and	reducing	
the	total	task	completion	time.	We	refer	to	this	optimization	as	amplifying	domain	expertise.	
While	there	is	active	research	in	making	machine	learning	models	more	explainable	and	
usable,	they	focus	on	the	final	outputs	of	the	model.	However,	in	the	clinical	domain,	expert	
involvement	is	needed	at	every	pipeline	step:	curation,	cleaning,	and,	analysis.	To	this	end,	we	
review	literature	from	the	database,	human-computer	information,	and	visualization	
communities	to	demonstrate	challenges	and	solutions	at	each	of	the	data	pipeline	stages.	We	
then	present	a	taxonomy	of	amplifying	expertise,	which	can	be	applied	when	building	
systems	for	domain	experts.	This	includes	summarization,	guidance,	interaction,	and	
acceleration.	Finally,	we	demonstrate	the	use	of	our	taxonomy	with	a	case	study.	
	

Introduction			
Recent	advancements	in	data	availability	(e.g.,	digitization	of	health	records)	and	deep	neural	
networks	[1]	has	led	to	the	resurgence	of	artificial	intelligence.	This	has	served	as	a	catalyst	
for	data-driven	decision	making	in	many	domains.	However,	for	high-stakes	applications,	
such	as	financial	and	healthcare	domains,	it	is	rare	for	domain	experts	to	execute	decisions	
solely	based	on	artificial	intelligence	algorithms	[2].	Domain	experts	in	this	context	are	
individuals	who	are	not	necessarily	trained	in	computational	fields,	but	inform	the	design	and	
are	end-users	of	data-driven	algorithms	(e.g.,	healthcare	providers,	hospital	administrators).	
Note	that	domain	experts	can	have	different	levels	of	expertise	in	their	specific	domain	(e.g.,	
interns,	residents,	attendings),	and	we	do	not	differentiate	between	these	levels	in	this	work.	
While	the	role	of	experts	has	been	studied	in	clinical	decision	support	(CDS),	we	find	a	gap	in	
their	involvement	in	the	data	analysis	pipeline,	which	we	focus	on.	
	
Domain	expert	involvement	remains	necessary	in	the	healthcare	domain,	but	this	
involvement	brings	significant	challenges	and	implications	for	data-driven	applications.	
Domain	experts	are	expensive	resources	with	limited	time	for	these	efforts	and	excessive	
reliance	on	domain	expertise	could	potentially	lead	to	systems	that	are	overly	customized	and	
not	reproducible	or	scalable.	Because	of	these	challenges,	designing	systems	for	them	
requires	careful	thought.	To	address	these	challenges,	we	present	a	framework	for	amplified	
intelligence	which	identifies	the	points	in	the	process	where	expertise	can	be	effectively	
leveraged.	Amplification	of	expertise	then	refers	to	the	process	of	automating	redundant	or	
inferable	tasks,	so	that	domain	experts	can	focus	their	efforts	on	tasks	that	require	domain	



knowledge.	This	is	a	synergy	between	the	domain	expert	and	the	system,	which	involves	
summarization	of	data	and	decisions,	guidance	towards	insights,	interaction	by	the	domain	
expert,	and	acceleration	of	input	(Figure	1).		

Prior	Work	
There	is	active	research	on	interactive	and	human-in-the-loop	systems	in	many	computer	
science	sub-disciplines.	The	database	and	visualization	communities	have	produced	
numerous	tools	[3-8]	to	aid	data	scientists	with	data	wrangling	and	analysis.	At	the	decision-
making	stage,	the	machine	learning	community	has	looked	at	making	black-box	models	
explainable	[2,	9-12]	while	the	human-computer	interaction	(HCI)	community	has	been	
studying	how	difference	in	explainability	affects	decision	making	[13,	14].	Finally,	the	
crowdsourcing	community	has	concentrated	on	human-powered	computation	by	optimizing	
tasks	(e.g.,	simplifying	tasks	[15],	minimizing	number	of	questions	[16,	17],	optimizing	
workflows	[18-20]).	However,	we	focus	on	data-powered	experts	by	amplifying	expertise.	
While	we	draw	from	prior	work,	systems	designed	for	healthcare	domain	experts	require	
special	consideration	because	they	have	characteristics	that	distinguish	them	from	data	
scientists	and	crowd-workers.	

Special	Considerations	in	the	Healthcare	Domain	
First,	domain	expert	input	is	usually	needed	for	data	tasks	that	require	experiential	
knowledge	and	judgment	(such	as	medical	diagnoses,	forensic	analysis	[21]).	The	critical	and	
subjective	nature	of	these	decisions	necessitates	transparency,	both	from	the	algorithm	as	
well	as	domain	experts.	Hence,	the	system	needs	to	summarize	the	impact	of	algorithmic	or	
experts’	manipulation	of	the	data	[22].	Second,	due	to	their	specialized	training,	domain	
experts’	time	is	expensive	and	limited[23,	218].	This	constraint	makes	it	imperative	that	we	
build	tools	that	guide	them	to	insights	while	reducing	physical	and	cognitive	effort	[24].	
Third,	since	domain	experts	are	trained	in	non-computational	fields,	systems	designed	for	
them	should	provide	high-level	interaction	capabilities.	This	is	referred	to	as	editable	shared	
representations	between	computers	and	humans	[25].	Examples	of	this	include	natural	
language	interfaces	and	form-based	input	[26].	Finally,	domain	experts	are	highly	trained	
individuals,	which	allows	systems	to	accelerate	their	input	by	using	domain-specific	
assumptions	and	ontologies	[27,	28].	Keeping	these	factors	in	mind,	expertise	amplification	
involves	summarization,	guidance,	interaction,	and	acceleration	(Figure	1).		We	will	explore	
each	of	these	in	detail	in	the	following	sections.	
	

	
Figure	1:	Domain	Expertise	Amplification	

The	Data	Pipeline	
There	are	opportunities	to	amplify	expertise	at	all	stages	of	the	pipeline.	The	data	pipeline	
refers	to	the	different	stages	that	the	data	need	to	go	through	before	they	can	provide	
decision	support.	It	can	roughly	be	broken	into	three	stages:	curation,	cleaning,	and	analysis.	
Tools	at	the	end	of	the	pipeline	have	only	looked	at	explaining	models	but	not	at	



amplification.	In	contrast,	tools	at	earlier	pipeline	stages	have	been	designed	mainly	for	data	
scientists	and	not	for	experts.	Domain	experts,	however,	are	involved	at	every	stage	of	the	
pipeline	[26-30],	especially	in	clinical	research	settings	where	datasets	contain	specialized	
information.	Thus,	there	is	a	need	to	amplify	domain	expertise	throughout	the	pipeline.	In	this	
work,	we	provide	examples	from	the	informatics	literature	to	highlight	the	need	for	expert	
involvement	at	each	pipeline	step.	We	then	review	literature	from	the	database,	HCI,	and	
visualization	communities	about	challenges	and	current	approaches	at	different	stages.	Based	
on	our	review,	we	present	a	novel	taxonomy	for	amplifying	domain	expertise	and	
demonstrate	its	use	with	a	case-study	in	empiric	antibiotic	prediction.	Our	review	can	serve	
as	a	guide	to	new	clinical	research	projects,	and	our	taxonomy	can	be	applied	when	designing	
systems	for	experts,	especially	for	low-budget	projects	when	there	are	limited	resources	and	
availability	of	domain	experts.		

Challenges	in	the	Data	Pipeline	

We	organize	this	section	to	reflect	the	clinical	data	pipeline,	which	often	involve	the	following	
steps:	data	is	curated	from	the	EHR	data	warehouse	and	annotated	with	external	data	
sources,	cleaned	and	validated,	and	analyzed.	Multiple	people	are	involved	at	various	stages	
of	the	pipeline.	The	prevalent	notion	of	the	workflow	is	that	a	data	engineer	restructures,	
cleans,	and	sets	up	the	infrastructure	for	the	analysis	for	data,	a	data	scientist	then	analyzes	
and	models	the	data,	which	a	software	engineer	implements	into	a	decision	support	system.	A	
domain	expert	then	consumes	the	end-product	to	make	decisions.	However,	in	clinical	
settings,	the	specialized	nature	of	the	data	often	requires	domain	expert	involvement	at	every	
step	of	the	pipeline,	which	we	will	demonstrate	in	this	section.	Allowing	domain	experts	to	
directly	and	efficiently	interact	with	data	removes	the	need	for	them	to	rely	on	a	data	
engineer	or	data	scientist,	who	can	then	respectively	focus	on	infrastructure	and	model	
construction.	Moreover,	since	domain	experts	are	the	stakeholders	in	the	output	of	data	
pipelines,	in	our	experience,	they	tend	to	be	engaged	users	who	want	to	interact	with	data.	In	
this	section,	we	motivate	domain	expert	involvement	with	examples	from	the	past	five	years	
of	research	presented	at	the	American	Medical	Informatics	Association	(AMIA)’s	annual	
symposiums.	We	review	the	computer	science	literature	to	identify	current	tools	and	
opportunities	for	expertise	amplification	at	the	three	stages	of	the	data	pipeline:	data	
curation,	data	cleaning,	and	data	analysis.	

Data	Curation	
Curating	data	sets	for	analysis	can	be	a	laborious	process	that	can	involve	combining	multiple	
data	sources	and	identifying	relevant	attributes.	Data	integration	and	data	discovery	address	
these	respective	problems.	
	
Data	Integration:	Medical	data	pipelines	often	involve	data	that	were	collected	for	purposes	
other	than	answering	the	research	question	at	hand.	This	usually	implies	that	information	is	
not	captured	in	a	manner	fit	for	analysis	[31,	32],	with	issues	such	as	missing	metadata	
information	[33].	Moreover,	in	some	situations	such	as	rare	disease	studies,	the	cohort	size	is	
too	small	for	analysis	[34],	while	in	other	cases,	external	features	such	as	air	quality	or	drug	
components	[35-38]	might	be	needed.	One	possible	solution	to	these	data	quality	issues	is	to	
curate	data	from	multiple	institutions	and	external	sources.	However,	the	different	data	
representations	[34,	39]	pose	challenges	in	entity	matching,	metadata	inference,	and	data	
integrity	[40,	41].	Data	integration	aims	to	automatically	resolve	schema	matching	and	entity	
matching	problems	during	data	curation.	For	biomedical	datasets,	integration	can	involve	
standardization	by	mapping	to	ontologies	with	controlled	vocabularies	[42-44].	While	
current	approaches	use	deep	learning	for	integration	[45-49],	generating	a	training	corpus	



and	validating	results	require	domain	expert	input.	For	example,	Cui	et	al.	require	domain	
experts	to	validate	data	curation	efforts	for	studying	sudden	death	in	epilepsy	[34].	In	
another	example,	building	an	automatic	concept	annotator	for	standardizing	biomedical	
literature	[49]	required	experts	to	annotate	different	concepts	[50-53]	manually.	Further,	a	
domain	expert	will	be	able	to	catch	inconsistencies	or	errors	made	by	an	automated	
integration	tool	much	faster	than	a	data	engineer	who	is	unfamiliar	with	the	domain.	Thus,	
there	is	a	need	for	building	interactive	data	integration	tools	for	domain	experts.	
	
Data	Discovery:	Data	discovery	refers	to	the	process	of	finding	relevant	attributes	or	cohort	
for	analysis.	This	is	especially	true	for	multidisciplinary	teams	where	the	domain	expert	
knows	the	disease	definition	but	is	not	familiar	with	the	database	schema.	At	the	same	time,	
the	data	engineer	can	explore	the	schema	but	might	not	recognize	that	a	field	is	relevant.	
Integrating	data	from	multiple	sources	only	exacerbates	this	problem.	In	the	informatics	
community,	DIVA[214]	aids	in	cohort	discovery	by	ingesting	expert-defined	constraints,	
while	visual	analytic	systems[215,	216]	such	as	CAVA	provide	an	interactive	interface.	In	the	
database	community,	Nargesian	[54,	55]	has	looked	at	finding	unionable	(more	data	points)	
and	joinable	(more	attributes)	data	for	a	given	dataset.	These	algorithms	are	useful	when	
trying	to	augment	datasets	with	publicly	available	datasets	such	as	MIMIC	[56]	or	even	for	
exploring	a	complex	schema	like	the	Unified	Medical	Language	System	(UMLS)	[57].	In	
addition	to	using	properties	of	the	data	to	find	possible	matches,	domain	rules	can	be	useful	
for	identifying	relevant	data.	This	requires	an	interactive	interface	where	domain	experts	can	
look	at	subsets	of	interest	and	iteratively	join	and	filter	the	data	[58]	to	find	the	required	
cohort.	Recently,	query	logs	have	been	used	to	design	precision	interfaces	[59,	60],	which	
customize	the	interface	for	the	user’s	interactive	task.	

Data	Cleaning	
After	curating	relevant	datasets,	data	still	need	to	go	through	multiple	preprocessing	steps	
before	they	are	analysis-ready.	These	include	identifying	and	fixing	incorrect	data,	data	
augmentation,	and	data	transformation,	all	of	which	benefit	from	domain	expert	involvement.	
	
Error	Fixes:	EHR	data	is	known	to	be	messy	and	have	errors	and	missing	values	[62-64].	A	
typical	data	cleaning	method	is	the	use	of	rule-based	systems	that	identify	dirty	data	by	
detecting	violations	of	user-specified	rules	or	known	functional	dependencies	[65-74].	But	
again,	these	systems	do	not	optimize	the	expert’s	rule	specification	process.	Crowdsourcing	
systems	also	have	been	used	to	correct	values	[18,	75],	though	they	are	not	always	an	option	
due	to	data	complexity	or	confidentiality.	Another	approach	to	identifying	errrors	and	
cleaning	data	is	to	augment	it	with	external	knowledge	bases	[76-78].	More	recently,	there	
have	been	many	approaches	[79-81]	that	use	deep	learning	for	automated	data	cleaning.	Of	
note	is	Holoclean	[80],	which	uses	a	statistical	model	to	combine	various	data	repair	signals	
such	as	violation	of	integrity	constraints,	functional	dependencies,	and	knowledge	bases.	
While	this	achieves	higher	performance	than	using	each	method	in	isolation,	there	is	scope	
for	identifying	which	of	the	signals	are	performing	the	poorest	or	what	additional	information	
would	help	improve	the	system's	performance.	Identifying	this	information,	incorporating	
domain	knowledge,	and	presenting	it	succinctly	to	a	domain	expert	remains	an	open	problem.		
	
Data	Augmentation:	While	data	entry	errors	[82]	and	missing	information	can	be	imputed	by	
semi-automated	methods,	a	more	difficult	problem	is	that	of	creating	a	gold	standard	for	
training	data,	which	is	referred	to	as	data	augmentation.	Many	healthcare	applications	
require	annotating	training	data,	e.g.,	clinical	text	annotation	[83-85],	clinical	decision	
support	[86-88],	identifying	new	terms	for	ontologies	[89],	index	terms	for	articles	[90],	



disease-specific	annotations	[50,	91,	92].	However,	very	few	applications	focus	on	optimizing	
the	domain	expert’s	data	augmentation	effort,	which	is	eventually	crucial	to	model	
performance.	A	notable	approach	to	this	is	the	Snorkel	system	[93],	which	automates	data	
augmentation	by	learning	the	labeling	function,	thus	accelerating	the	domain	expert’s	input.	
However,	there	are	opportunities	in	making	the	initial	labeling	process	more	interactive	since	
domain	experts	are	required	to	write	code.	Further,	the	system	does	not	provide	feedback	on	
how	labels	affect	the	data	set	or	final	model,	which	is	crucial	for	building	trust	in	medical	
pipelines.	Examples	of	interactive	solutions	include	Icarus	[27]	for	augmenting	microbiology	
data	and	Halpern	et	al.'s	system[94]	for	annotating	clinical	anchors.	Both	these	systems	use	
an	ontology	to	amplify	domain	expertise	interactively.	
	
Data	Transformation:	Other	than	fixing	incorrect	values	and	augmenting	datasets,	often,	data	
need	to	be	restructured	(e.g.,	splitting	values	in	a	column,	reformatting	dates).		Data	
wrangling	has	emerged	as	a	separate	field	in	the	past	decade	because	of	data	diversity.	
Potter's	Wheel	[95]	was	one	of	the	first	interactive	data	transformation	systems.	It	allows	the	
user	to	specify	transforms	which	are	encoded	as	constraints	and	used	to	detect	errors.	
Building	on	this	idea,	systems	such	as	Polaris	[96]	and	Trifacta	[4,	97]	infer	syntactic	rules	
from	user	edits.	Similarly,	programming-by-example	systems	[98,	99]	learn	transformations	
from	a	set	of	input-output	pairs.	These	techniques	have	informed	the	autofill	function	of	
Microsoft	Excel.	Since	many	domain	experts	employ	Excel	for	data	transformations	and	
analysis	[100],	spreadsheet	interfaces	should	consider	incorporating	domain	knowledge.		

Data	Analysis		
We	now	move	to	the	final	step	of	the	pipeline.	This	includes	initial	exploratory	analysis	to	
identify	attributes	of	interest,	as	well	as	explainability	of	models	for	decision	making.	
	
Data	Exploration:	During	the	exploration	step,	it	is	crucial	for	the	domain	expert	to	be	able	to	
directly	interact	with	the	data	for	effective	hypothesis	generation.	However,	domain	experts	
often	must	go	through	a	data	engineer	to	execute	the	relevant	query	[101,	102]	or	extract	
information	from	unstructured	notes[103].	The	data	are	then	validated	by	the	domain	expert	
through	manual	chart	review,	since	data	engineers	without	domain	knowledge	may	apply	
naive	filters	which	hide	insights	or	find	spurious	correlations.	To	address	these	challenges,	
the	informatics	community	has	built	tools	to	accelerate	chart	review	[104]	and	allow	
interactive	filtering	and	analysis	[105,	106].	Finalizing	an	analysis	dataset	can	then	take	
multiple	iterations	of	requests	and	validations	between	the	domain	expert	and	data	engineer.	
In	some	cases,	data	engineers	create	custom	dashboards	for	domain	experts	[107-109],	but	
the	latter	is	then	limited	to	brushing	and	linking	on	the	provided	view.	Mixed-initiative	
interfaces	such	as	Tableau	[96]	and	Dive	[5]	recommend	visualizations	based	on	statistical	
properties	of	the	data,	but	do	not	use	domain-specific	ontologies	which	can	enrich	the	domain	
experts’	interaction	and	accelerate	their	workflow.		
	
Visualizations	are	another	technique,	which	can	help	the	data	exploration	process.	When	used	
appropriately,	visualizations	can	provide	effective	summaries	and	reveal	patterns	not	
immediately	evident	by	statistical	overviews	[110].	Summaries	reduce	the	cognitive	load	on	
domain	experts	during	multidimensional	data	exploration,	allowing	them	to	drill-down	to	
specific	instances	as	needed	[111].	While	many	visualization	recommendation	systems	exist	
for	analyzing	numerical	data	[7,	112-114],	visualizations	in	healthcare	often	include	
categorical	and	text	data	[115,	116-118].	As	such,	node-link	diagrams	are	a	common	data	
representation	and	have	been	used	for	tracking	family	history	[119],	decision-making	[22,	
120],	and	identifying	hidden	variables	[121].	Visual	interfaces,	thus	amplify	expertise	by	



summarizing	data.	However,	they	can	be	more	powerful	if	they	allow	interaction,	provide	
guidance	by	highlighting	interesting	regions	for	exploration	[122],	and	accelerate	workflows	
by	extrapolating	domain	expert	interactions	based	on	properties	of	the	data	[22].	Thus,	there	
is	a	need	to	provide	domain	experts	with	tools	that	allow	for	more	sophisticated	data	
interaction.	
	
Explainability:	Finally,	we	cannot	discuss	clinical	pipelines	without	talking	about	
explainability.	The	interpretability	of	rule-based	systems	has	made	them	popular	in	a	variety	
of	clinical	applications,	including	decision	support	[123,	124],	antibiotic	recommendation	
[125],	updating	annotations	[126],	and	auditing	[127].	Interpretability	is	essential	because	
domain	experts	want	a	cause-and-effect	relationship,	based	on	which	actionable	decisions	
can	be	taken	[62,	64,	128].	Further,	healthcare	providers	may	not	use	models	they	do	not	
trust,	and	building	trust	requires	providing	context	and	explanations	[2].	
Current	approaches	in	healthcare	research	use	weights	and	activation	of	features	to	
characterize	attribute	importance	[129-131].	Ming	et	al.'s	RuleMatrix	[132]	provides	an	
alternate	approach	where	a	set	of	rules	represents	the	deep	learning	model.	The	expert	can	
explore	various	facets	of	each	rule,	such	as	data	affected,	distribution,	errors,	etc.	In	another	
example,	Cai	et	al.	[28]	built	a	tool	to	help	pathologists	find	similar	images	to	aid	in	diagnoses.	
The	tool	allows	domain	experts	to	search	for	similar	images	and	then	interactively	refine	
search	results.	It	allows	refinement	by	region	(crop	an	image),	refinement	by	concept	(filter	
by	extracted	concepts	from	image	embeddings),	and	refinement	by	example	(select	multiple	
images	as	examples).	These	refinement	techniques	are	examples	of	acceleration,	where	
interactions	are	interpolated	to	the	entire	dataset	by	learning	general	functions.	
Explainability	is	thus	key	for	the	adoption	of	deep	learning	models.		While	they	have	mainly	
been	applied	in	the	analysis	stage	of	the	pipeline,	they	are	equally	important	when	applying	
automated	algorithms	to	curation	and	cleaning.	
	

Table 1: Review of Current Approaches for each Data Pipeline Stage  
 

  Theme  Current Solutions  Domain Expert Role 
 
 

Data 
Curation 

 
Data Integration 

schema matching [134-139], 
interactive integration [140, 141], 
webtables integration [142-147], 
machine learning [45- 48] 

Domain experts are needed to validate results 
of integration, and interactively correct 
automated methods, which can then update 
their algorithm. 

Data Discovery attribute search [54, 55, 148, 149], 
interactive querying [58-60,214] 
visual analytics [215-216] 

Domain expert feedback is needed to finalize 
the analysis dataset.  

 
 
 

Data 
Cleaning 

 
 

Error Fixes 

rule-based [65- 73, 150] 
crowdbased [18, 75, 151, 152] 
knowledgebase [76-78] 
machine learning [79-81] 
functional dependency [74, 15-161] 

 
 
Domain expert input can be used to identify 
and fix errors. 

Augmentation machine learning [93, 162, 163] 
interactive [27, 94, 164-166] 

Domain experts can augment missing data 
with domain-specific rules. 

Transformation 
programming by example [99, 98] 
interactive rules [4, 95-97] 
foreign-key detection [149, 167-171] 

Domain experts can restructure the data to 
make it semantically valid. 

 
 

Data 
Analysis 

 
Exploration 

optimize performance [172-175] 
optimize insight [122, 176,177] 
provenance [178, 179] 
visualizations [5, 7, 112-114, 180-183, 217] 

Domain experts interact with summaries and 
outliers to draw insight  

Explainable systems [184, 185] 
visualizations [9, 12, 28, 132] 
empirical studies [10, 11, 13, 14] 

Domain experts inform the model design to 
ensure explainability.  

	



Amplifying	domain	experts'	abilities	in	the	analysis	stage,	therefore,	requires	interactive	data	
systems	using	a	combination	of	statistical	algorithms	and	compelling	visualizations.	
Moreover,	these	systems	need	to	follow	design-study	principles	[133].	System	designers	
should	consult	domain	experts	during	the	design	process	and	conduct	empirical	evaluation	to	
ensure	that	the	system	effectively	portrays	the	right	information.	Otherwise,	the	system	can	
end	up	burdening	and	biasing	the	domain	expert	instead	of	helping	[13,	97].	
	
We	have	highlighted	the	need	for	domain	expert	involvement	in	the	pipeline	and	described	
some	of	the	challenges	they	encounter.	While	we	have	briefly	expanded	on	some	available	
solutions,	Table	1	provides	a	more	comprehensive	list	of	references.	Summarizing	each	
technique	is	outside	the	scope	of	this	paper,	but	it	provides	a	guide	to	interested	readers	for	
further	reading.	

Taxonomy	of	Expertise	Amplification	

The	previous	section	motivated	the	need	for	domain	expert	involvement	throughout	the	
clinical	data	pipeline.	In	all	steps,	domain	expert	involvement	can	improve	automated	
methods,	but	must	be	done	appropriately	to	ensure	that	the	process	remains	robust	and	
reproducible.	Taking	this	into	consideration,	we	propose	a	taxonomy	that	can	be	employed	
when	designing	systems	to	amplify	expertise	in	the	clinical	pipeline.	Domain	expertise	
amplification	by	a	system	can	broadly	be	categorized	into	four	dimensions:	summarization,	
guidance,	interactivity,	and	acceleration,	as	shown	in	Figures	1	and	2.	Thus,	a	system	that	
wishes	to	amplify	expertise	should	apply	one	or	more	of	these	dimensions.	We	
demonstrate	these	categories	with	examples	from	computer	science	literature.	

	
Figure	2:	Taxonomy	of	Expertise	Amplification:	The	first	level	shows	the	four	dimensions	
which	should	be	employed	by	a	system	for	expertise	amplification.	The	second	level	
enumerates	the	sub-dimensions	along	which	amplification	can	be	done,	while	the	fourth	
level	in	grey	are	tools	that	can	be	applied.		

Summarization	

The	time	constraints	of	experts,	along	with	transparency	requirements	in	the	clinical	
domain,	motivate	the	need	for	effective	summaries	of	data	and	human	decisions.	While	



data	summaries	are	important	for	analysis,	summaries	of	human	decisions	allow	for	
improved	explainability	and	reproducibility.		

Data:	An	amplification	system	should	summarize	large	and	complex	datasets	so	that	
experts	can	meaningfully	consume	them.	This	is	relevant	for	identifying	inconsistencies	as	
well	as	for	open-ended	exploration	during	analysis.	It	can	be	overwhelming	for	an	expert	to	
go	through	large	and	wide	tables.	Amplification	systems	should,	therefore,	automatically	
summarize	complex	data	[186].	While	providing	data	samples	[27,	72]	and	statistical	
summaries	such	as	mean	and	variance	can	be	useful	for	providing	a	bird's	eye	view,	they	
are	not	always	enough	to	reveal	patterns	[110].	In	such	cases,	visual	summaries	can	provide	
additional	insight,	as	done	by	the	CAVA	system[215].	Multi-dimensional	data	can	be	
visually	summarized	by	presenting	each	dimension	as	a	coordinated	histogram	with	linked	
brushing	and	filtering	[172].	

Human	Decisions:	In	addition	to	data,	amplification	systems	need	to	summarize	algorithmic	
and	human	decisions	as	well.	This	is	because	domain	expert	involvement	is	usually	
required	in	situations	where	it	is	necessary	to	have	high-quality	data	[2,	21].	Hence	
amplification	systems	also	require	high	transparency	[184,	187].	To	support	algorithm	
transparency,	amplification	systems	can	show	visual	activation	of	features	that	led	to	the	
recommendation	[9]	or	similar	cases	in	the	data	that	serve	as	evidence	for	the	current	
recommendation	[188].	Summarizing	human	decisions	can	involve	expressing	data	
transformations	as	natural	language	rules	[4,	27]	and	as	visual	node-link	diagrams	[22].	
Further,	since	summarized	data	provides	an	abstract	or	aggregate	view,	there	is	a	need	for	
data	transparency,	meaning	that	experts	should	be	able	to	trace	the	individual	data	points,	
which	contributed	to	the	aggregate	summary.	This	involves	incorporating	ideas	from	
provenance	systems	such	as	Smoke	[178]	and	Scorpion	[179],	which	provide	fast	data	
lineage	tracking.	Finally,	for	each	application,	empirical	studies	are	needed	to	see	what	and	
how	information	should	be	presented	or	summarized	because	too	much	transparency	can	
overwhelm	and	negatively	impact	the	expert	[13].	

Guidance		

While	summaries	provide	a	global	view	of	the	data,	goals	of	exploratory	analysis	include	
finding	insights	and	data	quality	issues	[186],	which	might	require	looking	at	a	more	
detailed	view.	Systems	can	guide	experts	by	navigating	to	informative	subsets	as	well	as	by	
suggesting	data	transformations	and	edits.	

Data	Subset:	Amplification	systems	should	guide	the	expert’s	navigation	to	meaningful	
subsets.	For	example,	SeeDB	[112]	automatically	finds	interesting	visualizations.	Given	a	
query,	it	defines	“interestingness”	as	the	deviation	of	the	query’s	resultset	from	a	baseline	
dataset.	Similarly,	TPFlow	[189]	uses	tensor	decomposition	to	guide	users	in	
spatiotemporal	exploration.		For	data	cleaning,	error	detection	algorithms	such	as	Uguide	
[74]	and	DataProf	[72]	use	functional	dependencies	and	Armstrong	samples,	respectively,	to	
find	incorrect	tuples	for	human	validation,	while	Icarus	[27]	presents	the	expert	with	
impactful	subsets	for	data	completion.	Visual	summary	tools	such	as	Profiler	[180]	use	
statistics	to	find	data	quality	issues.	When	guiding	users	with	visual	summaries,	it	is	
important	to	pick	optimal	visual	encodings	for	revealing	the	relevant	insight	or	outlier.	This	
can	be	informed	by	Correll	et	al.’s	recent	work	[181],	which	empirically	evaluated	different	
visual	encodings	on	their	effectiveness	at	revealing	data	quality	issues.	

Edits:	In	addition	to	navigating	datasets,	amplification	systems	can	also	guide	experts	by	
suggesting	data	transformations	to	edit	the	data	during	the	cleaning	and	preparation	stage	
[4,	27,	99].	But	even	in	this	case,	transparency	is	required.	This	is	evidenced	by	the	fact	that	



in	empirical	studies	of	Proactive	Wrangler	[97],	users	often	ignored	the	suggested	
transformation	but	then	manually	performed	the	same	one	because	the	operation’s	
semantics	were	unclear.	Methods	to	aid	in	data	transformation	transparency	include	
showing	previews	and	transitions	of	the	data	changes	[190]	resulting	from	the	
transformation	operation.	

Interaction		

Along	with	making	system	internals	explainable	[10],	allowing	experts	to	interact	and	
modify	data	and	the	output	of	algorithms	increases	their	trust	in	amplification	systems	
[11].	For	empiric	antibiotic	recommendation	[191],	this	can	involve	allowing	the	healthcare	
provider	to	edit	model	features.	Providing	interaction	comes	at	the	cost	of	maintaining	
strict	latency	constraints	since	experts	will	expect	to	see	the	results	of	interaction	almost	
immediately	[133].	Techniques	for	maintaining	interactive	performance	include	sampling	
[192]	and	predictive	prefetching	[193].	Interaction	modes	can	include	data	transformation	
suggestions	and	what-if	analysis.		

Data	Transformation:	The	mode	of	interaction	for	data	transformation	in	expertise	
amplification	systems	also	needs	to	cater	to	their	background	and	training.	For	example,	
transformations	should	be	presented	as	natural	language	statements	[4]	as	opposed	to	code	
snippets	[93,	150].	While	graphical	user	interfaces	(GUIs)	can	decrease	trust	and	control	for	
system	administrators	[194],	they	are	needed	in	amplification	systems.	Gestural	query	
systems,	such	as	GestureDB	[58]	and	DBTouch	[195],	and	direct	manipulation	interfaces,	
might	be	preferable	to	domain	experts	who	are	unfamiliar	with	SQL.	Further,	domain	experts'	
affinity	for	spreadsheet	tools	[100]	motivate	designing	systems	with	spreadsheet	interfaces	
but	advanced	querying	capabilities	such	as	Dataspread	[196]	and	Sieuferd	[197].	

What-if	Analysis:	To	support	collaborative	decision	making,	amplification	systems	should	
allow	for	what-if	analysis,	where	domain	experts	can	apply	or	test	different	“decisions”	and	
“assumptions”	and	see	how	it	affects	the	dataset.	Collaborative	decision-making	is	important	
for	consensus	and	conflict	resolution.	Domain	experts	are	highly	trained	and	experienced	
individuals	in	their	fields,	which	affects	how	they	interact	with	systems	[198,	199].	Data	
pipeline	tasks	that	require	their	input	need	them	to	apply	knowledge	from	training	and	
experience	[27].	Such	tasks	inherently	require	judgment,	which	can	be	biased	and	can	vary	
between	and	within	domain	experts	[200].	To	account	for	this	bias,	consensus	from	multiple	
experts	is	needed.	However,	unlike	crowd	workers,	where	differences	in	results	can	indicate	
bad	actors	entering	random	choices	[18,	201,	202],	in	the	case	of	domain	experts,	they	reveal	
differing	judgments.	As	such,	automatic	conflict	resolution	[203],	such	as	majority	voting,	
cannot	be	used	since	disagreements	require	expert	discussion	[22].	Collaboration	is	required	
for	conflict	resolution,	and	what-if	analysis	can	speed	up	this	process.	Capturing	and	sharing	
metadata	is	also	useful	for	collaboration	[204-207].	

Acceleration	
Time	constraints	of	domain	experts	necessitate	the	need	to	accelerate	their	input	provision.	
This	involves	designing	interfaces	that	aid	the	expert’s	task	and	building	interactions	that	
interpolate	from	edits	to	generalize	to	multiple	data	points.	
	
Interface	Design:	Most	experts	use	structured	interfaces	such	as	forms	[208]	or	free	text	notes	
[209]	for	data	entry	or	querying	and	spreadsheet	interfaces	for	data	exploration	[100].	
Following	user-centered	interface	design	and	adhering	to	latency	constraints	is	even	more	
essential	for	these	systems.		Query	interface	layouts	can	be	optimized	by	using	statistical	



properties	of	the	data	[210,	211,	212]	and	prior	query	logs	[213,	60],	while	spreadsheet	
interfaces	can	be	improved	by	incorporating	higher	expressibility	[196,	197].	The	Usher	[211]	
system,	an	example	of	the	former,	uses	a	probabilistic	model	on	prior	input	form	data	to	
optimize	the	form	structure.	This	involves	showing	highly	selective	data	attributes	at	the	
beginning	of	the	form	to	reduce	the	complexity	at	later	stages,	thus	reducing	the	scope	of	
error	and	accelerating	input	provision.		
	
Generalize:	An	advantage	of	building	systems	for	domain	experts	is	that	domain-specific	
information	can	be	used	to	accelerate	their	input.	For	example,	Icarus	[27]	uses	the	organism	
and	antibiotic	hierarchy	encoded	as	foreign-key	relations	in	the	database	to	generalize	a	
single	edit	to	a	rule	that	fills	in	multiple	cells,	accelerating	the	data	completion	process.	In	
another	example,	Cai	et	al.	[28]	allow	domain	experts	to	refine	result	sets	with	domain-
specific	concepts	extracted	from	image	embeddings.	

Case	Study	
We	now	illustrate	our	taxonomy	with	a	case	study	from	a	representative	clinical	data	project:	
modeling	empiric	antibiotic	treatment	(Figure	3).	We	apply	the	four	dimensions	of	
amplification	to	the	three	stages	of	the	pipeline.	This	is	summarized	in	Table	2.		
	

	
Figure	3:	Data	pipeline	for	Empiric	Antibiotic	Prediction	
	
At	the	data	curation	level,	our	domain	expert,	Lucy,	must	provide	the	cohort	definition	along	
with	variables	of	interest	(e.g.,	demographics,	comorbidities,	allergies,	etc.)	to	a	data	engineer,	
who	pulls	the	relevant	data	from	the	EHR	data	warehouse.	After	the	data	pull,	Lucy	looks	
through	the	initial	set	and	formulates	additional	exclusion	rules	to	ensure	it	matches	the	
clinical	case	definition.	To	implement	these	rules,	the	data	engineer	annotates	the	data	with	
microbiology	classification	information	the	UMLS	metathesaurus	[57].	This	process	could	be	
improved	with	an	expertise	amplification	system.	The	system	should	summarize	data	by	



showing	the	distribution	of	variables	with	linked	brushing	and	filtering	so	that	Lucy	could	see	
how	the	variable	distributions	are	correlated.	It	could	guide	Lucy	by	suggesting	correlated	
variables	to	the	ones	she	selects.	During	validation	of	the	cohort,	Lucy	should	interactively	be	
able	to	select	datapoints	to	include.	Finally,	the	system	should	be	able	to	accelerate	Lucy’s	
validation	by	suggesting	exclusion	rules	based	on	her	interactions.	
	
After	the	cohort	is	finalized,	Lucy	faces	a	data	cleaning	task.	The	microbiology	lab	provides	
data	for	only	a	subset	of	antibiotics	based	on	domain	characteristics	and	institutional	
preferences.	At	point-of-care,	physicians	use	domain	knowledge	to	infer	susceptibilities	on	
the	unreported	values.	When	using	this	data	for	predictive	modeling,	the	unreported	values	
must	be	filled	by	domain	experts.	To	address	this,	we	built	Icarus	[27]	to	amplify	expertise	in	
data	augmentation.	Icarus	guides	the	domain	expert	by	showing	them	high	impact	data	
subsets	for	edits.	It	allows	both	direct	interactions	via	edits	and	indirect	interaction	via	rules.	
Finally,	Icarus	accelerates	task	completion	by	leveraging	the	UMLS	classification	to	suggest	
general	rules	based	on	the	domain	expert’s	single	edit.	It	also	allows	the	domain	expert	to	
preview	the	impact	of	a	rule	by	summarizing	the	cells	that	will	be	impacted.		
	
Due	to	the	subjective	nature	of	this	task,	multiple	domain	experts	need	to	come	to	consensus	
on	unreported	values.	To	amplify	the	consensus	process,	we	designed	Delphi	[22],	which	
visualizes	the	conflicts	and	redundancies	in	domain	expert	rules.	It	provides	an	overview	of	
the	dataset	by	visually	summarizing	the	antibiotics	and	related	rules	in	a	node-link	diagram.	
The	node	sizes	guide	the	expert	to	regions	of	high	conflict	by	encoding	the	number	of	data	
points	affected.	It	allows	the	domain	experts	to	interactively	edit	the	rule	set	by	accepting	and	
rejecting	rules.	Finally,	it	accelerates	the	domain	experts’	task	completion	by	automatically	
removing	redundant	rules	after	each	edit.	
	
Once	domain	experts	have	come	to	a	consensus,	the	dataset	is	ready	for	analysis.	Our	data	
scientist	uses	penalized	logistic	regression	to	model	the	resistance[219].	During	this	stage,	
Lucy	provides	insights	on	the	different	variables	and	their	relations.	After	model	creation,	
Lucy	can	analyze	and	validate	the	results	on	interactive	analysis.	For	a	given	patient,	the	
system	should	summarize	its	results	by	showing	the	probability	of	coverage	along	with	
confidence	intervals.	It	should	guide	Lucy	by	drawing	attention	to	any	abnormal	covariates,	
whose	value	significantly	deviates	from	others	in	the	cohort.		It	should	allow	Lucy	to	
interactively	select	covariates	and	rerun	the	model	for	the	specific	patient.	It	should	accelerate	
analysis	by	showing	similar	patients	for	who	the	model	should	also	be	updated.		
	
Discussion	
	
We	have	provided	examples	from	the	informatics	literature	to	motivate	the	need	for	domain	
expert	involvement	in	all	steps	of	clinical	data	pipelines,	from	curation	to	analysis.	While	this	
work	is	based	on	our	experiences,	we	have	done	our	best	to	do	a	targeted	interdisciplinary	
review	that	can	serve	as	a	guide	to	clinical	data	projects.	Our	work	is	related	to	previous	
surveys	in	visual	analytics	in	healthcare[217]	and	interactive	systems[133].	Our	survey	is	
unique	in	that	it	focuses	on	the	clinical	data	pipeline	and	provides	a	taxonomy	on	designing	
systems	for	amplifying	expertise.	Specifically,	expertise	amplification	involves:	
summarization,	guidance,	interactivity,	and	acceleration.	Our	case	study	illustrates	how	these	
can	be	applied	to	a	clinical	data	pipeline.	
 
 

 



Table 2: Applying Amplification to the Clinical Data Pipeline for Empiric Antibiotic Prediction 
 

   Domain Expert Task  Amplification 

 
Data Curation 

Identify variables of interest, 
validate patients included in 
the cohort and make domain-
specific exclusionary rules 

• Summarization: Present distribution of variables of interest 
• Guidance: Suggesting additional variables based on the selected 

ones 
• Interactions: Allow expert to select and remove data points 
• Acceleration: Suggest criteria based on the domain expert’s 

inclusion and exclusion. 
 
 
Data 
Cleaning 

 
Augmentation 

Fill in unreported 
microbiology susceptibilities 
with rules 

• Summarization: Preview a rule by showing distribution of the 
cells that will be impacted 

• Guidance: Show high impact data subsets for edits.  
• Interactions: Direct edits on interface and indirect edits via rules. 
• Acceleration: Suggest general rules based on the domain expert’s 

single edit.  

Validation Validate data augmentation 
by examining rule set and 
consolidating them to 
remove conflicts. 

• Summarization: Visual summary of rules and their relations 
• Guidance: Node size guides user to high-conflict areas  
• Interactions: Edit rule-set by accepting and rejecting rules 
• Acceleration: Automatically remove redundant rules 

 
Data Analysis 
 
 

Understand the model and its 
predictions for individuals 
and different patient 
subpopulations 

• Summarization: Show probability of coverage with confidence 
interval 

• Guidance: Highlight covariates of concern  
• Interactions: Allow domain expert to select covariates to include 
• Acceleration: Show similar patients for who the model should be 

updated. 
	
Conclusion	
	
Effectively	engaging	domain	experts	is	crucial	for	the	success	of	data-driven	workflows.	We	
provide	a	novel	framework	for	developing	systems	that	amplify	domain	expertise.	
Amplification	systems	should	summarize	data,	guide	domain	experts’	data	navigation,	allow	
domain	experts	to	interact	and	update	algorithms,	and	finally	accelerate	their	task	by	learning	
from	their	interactions.	This	framework	draws	on	research	from	multiple	computer	science	
sub-disciplines.	As	we	move	towards	data-driven	workflows,	interdisciplinary	methods	are	
necessary	for	the	greatest	impact.	Empowering	stakeholders	to	interact	with	the	data	directly	
can	lead	to	faster	and	more	impactful	insights	and	decision-making,	which	is	vital	for	
democratizing	data	to	benefit	society.				
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