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Motivation Recommending an Antibiotic

Empiric Prescription

• Antibiotics fall on a spectrum based on their coverage2:
• Prescribing a narrow–spectrum antibiotic risks the 

patient’s infection not being treated appropriately.
• Prescribing a broad-spectrum antibiotic can increase 

antibiotic resistance in the community.

• For any treatment option, we are interested in two metrics:
• Percentage of infections covered in the entire dataset:
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• Average breadth score (determined by expert survey2) 
for correctly treated patients:
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• For each infection:
• We defined an ideal antibiotic as the antibiotic with 

the lowest breath score that covered the infection.
• We defined the actual empiric antibiotic 

regimen as all antibiotics prescribed within 24hrs of 
admission.

• How does the ideal antibiotic compare with the actual 
empiric antibiotic regimen for these metrics?

Predicting Empiric Antibiotic Coverage Based on 
Patient Factors

• Providers prescribe empiric antibiotics based on patient risk 
factors and guideline recommendations.

• Prior work has looked at modeling probability of coverage of 
individual antibiotics based on patient factors1.

• However, combining results from multiple models to find the 
ideal antibiotic is challenging. 

• Dataset: Hospitalized adult patients with a positive urine culture 
within 48hrs of admission.

• N=6,366, train = 5,093, test = 1,273
• Each row in our data corresponds to a patient’s infection. We 

determined the outcome for each antibiotic based on whether 
this antibiotic would cover the patient’s infection3. 

• We model individual antibiotic coverage with penalized logistic 
regressions1.
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Limitations and Future Directions

• Actual empiric treatment is based on other factors that may not 
have been taken into account in this analysis: allergies, drug-
drug interactions, severity of infection (sepsis), concurrent 
infections.

• Data-driven models have the potential to cover the same number 
of infections with narrower-spectrum antibiotics. 

• Deploying these models to decision-makers requires additional 
studies on when, what and how to present this information. 
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Antibiotic	Breadth	Antibiotic Patient 1 Patient	2

Piptazo 95% 90%

Cefepime 86% 65%

Ciprofloxacin 72% 44%

Ceftriaxone 87% 60%

Cefazolin 81% 50%

• How do we recommend one antibiotic from Figure 2?
1. Pick the antibiotic with highest probability of coverage 

(gray circle)
2. Recommending one antibiotic for all patients: For 

example ceftriaxone (yellow circle) – this is followed 
by many providers

3. Choose a threshold: For example, recommend the 
narrowest antibiotic with at least 0.65 probability of 
coverage (green circle)

Modeling Antibiotic Resistance
Figure 1: Lots of scope for improving empiric prescription

Figure 2: Model outcomes for 2 example patients.

• Can we do better?
• Picking different thresholds for each antibiotic varies 

the two metrics (green circles in Figure 4).
• Increasing coverage requires increasing breadth, as 

expected.
• Neural Network: As a first step in directly modelling the ideal 

antibiotic, we used a hierarchical feedforward network:
• Three fully connected layers
• Dropout rate of 0.2 after each layer
• Binary crossentropy loss function
• Sigmoid activation

• The results from the neural network (purple crosses) are 
comparable to the penalized models. 

Higher	coverage		
at	same	breadth	
as	actual	regimen

Figure 3

Lower	breadth	at	
same	coverage	as	
actual	regimen

Figure 4
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